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Abstract. Time Series Clustering (TSCL) involves grouping unlabelled
time series into homogeneous groups. A popular approach to TSCL is
to use the partitional clustering algorithms k-means or k-medoids in
conjunction with an elastic distance function such as Dynamic Time
Warping (DTW). We explore TSCL using nine different elastic distance
measures. Both partitional algorithms characterise clusters with an ex-
emplar series, but use different techniques to do so: k-means uses an
averaging algorithm to find an exemplar, whereas k-medoids chooses a
training case (medoid). Traditionally, the arithmetic mean of a collection
of time series was used with k-means. However, this ignores any offset.
In 2011, an averaging technique specific to DTW, called DTW Barycen-
tre Averaging (DBA), was proposed. Since, k-means with DBA has been
the algorithm of choice for the majority of partition-based TSCL and
much of the research using medoids-based approaches for TSCL stopped.
We revisit k-medoids based TSCL with a range of elastic distance mea-
sures. Our results show k-medoids approaches are significantly better
than k-means on a standard test suite, independent of the elastic dis-
tance measure used. We also compare the most commonly used alternat-
ing k-medoids approach against the Partition Around Medoids (PAM)
algorithm. PAM significantly outperforms the default k-medoids for all
nine elastic measures used. Additionally, we evaluate six variants of PAM
designed to speed up TSCL. Finally, we show PAM with the best elastic
distance measure is significantly better than popular alternative TSCL
algorithms, including the k-means DBA approach, and competitive with
the best deep learning algorithms.
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1 Introduction

Time Series Clustering (TSCL) is an unsupervised technique where a set of time
series, are partitioned into “clusters”, which contain time series considered to
be homogeneous. By contrast, time series in different clusters are considered
heterogeneous. However, there is no generally accepted definition of a cluster
because “clusters are, in large part, in the eye of the beholder” [8]. This is
because different users may have different enough needs and intentions to want a



2 C. Holder, D. Guijo-Rubio, A. Bagnall

different algorithm and notion of cluster [31]. Therefore, due to the nature of the
various users problems and needs, hundreds of clustering algorithms have been
proposed. Many of these have been adapted to deal with time series. For instance,
alternative transformation based approaches [21], deep learning based clustering
algorithms [17] or statistical model based approaches [4], among others, have
been proposed for TSCL. Our focus is on partitional clustering based on distance
functions used to measure dissimilarity between whole time series.

Measuring dissimilarity is critical to clustering techniques in order to fulfil
the objective of any clustering algorithm: it must form internally homogeneous
and externally heterogeneous clusters. Measuring homogeneity usually requires
a measure of dissimilarity (or similarity) between cases, commonly known as a
distance measure.

In traditional clustering, this is normally a correlation based or Minkowski
metric such as Euclidean Distance (ED). However, these traditional distances do
not take advantage of the unique traits and characteristics of time series data.
There has been a popular research topic in designing time series specific dis-
tance measures that can be used in clustering (and classification). For example,
elastic distances compensate for misalignment creating a path through a cost
matrix by either warping or editing time series. The most common and famous
elastic distance is Dynamic Time Warping (DTW) [28]. A comparison of nine
elastic distance measures [22] found there was little difference in terms of accu-
racy of classification accuracy when used with a nearest neighbour classifier. For
TSCL, DTW is the most popular elastic distance measure, as can be observed
in these works [3,10,20,26]. It is most commonly used with k-means clustering
(for example [14]), which iteratively assigns cases to clusters with the nearest
exemplar, or centroid. Then, the centroid is recalculated from the new mem-
bership through averaging. One popular solution for DTW based k-means is to
use Dynamic Barycentre Averaging (DBA) [27] to find centroids. This involves
aligning cluster members to each other with DTW, then averaging along paths.
This improves k-means clustering, but at a high computational cost. An alter-
native to averaging to find centroids is to select instances, known as medoids,
to represent cluster exemplars. The most commonly used k-medoids algorithm
tries all of the current cluster members as the exemplar and chooses the one
that minimises a specific clusters distance to medoid. In common with the lit-
erature, we call this algorithm alternate or alternating k-medoids, although it is
sometimes referred to as Lloyds algorithm [23]. k-medoids algorithms have been
used much less frequently in the TSCL literature, particularly since DBA was
proposed.

Recent research [12] compared the performance of nine elastic distance mea-
sures using both k-means and a k-medoids (only using alternating k-medoids).
The main conclusion of this work was that two distance functions, Move Split
Merge (MSM) [34] and Time Warp Edit (TWE) [24], performed better than
other distances with both clustering algorithms. A secondary conclusion was
that k-medoids approach generally outperformed k-means. One key feature of
k-medoids algorithms is that they require the calculation of the distance matrix
between instances prior to clustering. The O(n2) space complexity can introduce
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an unacceptable overhead for large problems. Nevertheless, k-medoids algorithms
clearly have a role to play in a large majority of TSCL studies.

Our aim is to explore k-medoids based TSCL. We assess whether k-medoids
based TSCL is better than k-means based, regardless of the elastic distance func-
tion used. We then explore some of the large number of variants for k-medoids
clustering that have not been used in the TSCL literature before. Finally, we
compare the performance of the best k-medoids clustering approach to those of
popular alternative TSCL algorithms and show them to be significantly better
on the UCR archive [5]. Thus, our contributions are summarised as follows:

1. We compare the performance of k-means and standard k-medoids on 112
UCR problems using nine elastic distance measures, focussing on the clus-
tering algorithm rather than the distance function.

2. We provide a survey of variants of k-medoids, aligned with implementations
in the aeon toolkit1.

3. We show that the Partition Around Medoids (PAM) [19] algorithm is signif-
icantly better than the standard k-medoids approach.

4. We evaluate the impact of a range of PAM refinements.
5. We show that PAM using MSM and TWE is significantly better than popular

alternative approaches, and is not worse than the best deep learning model
out of over 300 evaluated in [17].

The rest of this paper is structured as follows. Section 2 provides background
information into k-medoids based clustering. Section 3 describes the set of elas-
tic distance functions, standing out MSM and TWE. In Section 4, we give an
overview of the experimental settings, performance measures and statistical tests
used for comparing the methodologies. In Section 5, experimental results for the
aforementioned comparisons are presented. Finally, Section 6 summarises our
findings and highlights future work.

2 k-medoids based clustering background

k-means and k-medoids are partition based clustering algorithms and share the
same basic components. Firstly, the algorithm selects time series, which we call
exemplars, that are meant to characterise a cluster. This is known as the ini-
tialisation stage. After initialisation, there is a process of assigning membership
based on distances to exemplars (the assign method). Then, exemplars are up-
dated based on new cluster assignments (the update stage). These three steps
are repeated until some convergence condition is met.

The iteration aims to minimise an error objective function of within class
deviation, or Total Deviation (TD), given as follows:

TD =

k∑
i=1

∑
xc∈Ci

d(xc, ei) (1)

1 https://github.com/aeon-toolkit/aeon/

https://github.com/aeon-toolkit/aeon/
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where k is the number of clusters, Ci is the set of cases in the ith cluster, d
is the disimilarity measure, xc is a case in cluster Ci and ei is the exemplar
(representative) of cluster Ci. One disadvantage of k-means for clustering is that
because the exemplars are centroids (averaged cluster members), repeated calls
to the distance function are required.

k-medoids clustering algorithms use instances from the train data (known
as medoids) as the cluster exemplars, and hence, they can use precomputed
distances. The assign and update operations can be performed independently of
the time series and distance function. It is worth noting that this need for a
pairwise distance matrix introduces memory overhead quadratic in train set size
n, needing O(n2) distance function calls. The key algorithmic design component
for k-medoids based clustering is how to choose the medoids and what objective
function to use.

2.1 Alternate k-medoids

Given a crisp cluster label to each instance, the simplest approach to choose the
medoid mi for cluster Ci is to try all current members of the cluster, and choose
the one minimising the within cluster distance. At any iteration, the medoid for
each cluster is chosen independently based on currently assignment, as follows:

mi = arg min
xm∈C

∑
xc∈C

d(xc, xm). (2)

where mi is the ith medoid, C is a set of cases, xm and xc are time series in C,
and d is a dissimilarity measure. This alternate k-medoids is the simplest form
of medoids clustering. It is closely aligned with k-means (Lloyds [23]) and gets
its name because of the alternating stages of the assignment and update. The
main difference between alternate k-medoids and k-means is when calculating
new cluster centres, k-means computes an average whereas alternate k-medoids
finds medoids.

2.2 Partition Around Medoids (PAM)

Alternating k-medoids optimises the medoid within the current cluster assign-
ment. This may miss the opportunity for taking medoids from other clusters and
it may also converge prematurely since exemplars are less likely to change than
with k-means [32]. PAM [19] is an alternative approach designed to overcome
these problems. PAM follows a similar structure to alternate k-medoids but uses
a different evaluation function to choose new medoids. It allows cases to become
medoids of clusters they did not previously belong to, and when evaluating a
new candidate medoid for any cluster, the total within cluster distance of all
clusters is considered.

The original PAM used a bespoke initialisation function called build, which is
similar to the restart methods used with k-means. However, for our experiments
we use random initialisation with PAM. The reason for this is outlined in Section
4. The swap stage of PAM is described in Algorithm 1.
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Algorithm 1 PAM swap: Iterative improvement, where X is a collection of time
series, n is the number of cases in X, medoids is the current set of medoids, k is
the number of medoids and d is a dissimilarity measure

1: init← findTD(X,medoids)
2: best← TD
3: cm← medoids
4: continue ← true
5: while continue do
6: for i← 1 to k do
7: a← cmi, b← best
8: for j ← 1 to n do
9: if xj /∈ cm then
10: cmi ← xj

11: current← findTD(X, cm)
12: if current < best then
13: best← current
14: if best = b then
15: cmi = a

16: if best = init then
17: continue ← false

18: return best, cm

Function findTD implements Equation 1. PAM uses a greedy algorithm that
operates cluster by cluster (line 6). For each cluster, it tries all cases that are not
currently medoids (lines 8-11) keeping the case that gives the lowest TD (lines
12-13). If there is no better candidate, the current medoids is retained (lines
14-15). The process terminates if the medoids have not changed (lines 16-17).

Finding the global optimum of the k-medoids problem is NP-hard [15], which
is why PAM uses a greedy approximation. The algorithm requires a distance
matrix (O(n2) memory) and each iteration has time complexity O(kn2). As this
is both computationally and memory expensive many variations of PAM have
been proposed to reduce memory, time complexity, or both.

2.3 PAM Variants

A range of refinements of the PAM algorithm have been proposed to improve
PAM efficiency in both computational complexity and memory:

The Clustering LARge Applications (CLARA) [16] algorithm repeatedly
applies PAM on a random subset of cases (with the recommended number being
s = 40 + 2k). Once PAM is performed on the subset of cases and medoids ob-
tained, the remaining cases are assigned to their closest medoid. This is repeated
for multiple iterations and the iteration that has the lowest TD is returned. The
time complexity is reduced to O(k3 + s).
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CLARA based on raNdomised Search (CLARANS) [25] adapts the swap
operation of PAM to use a more greedy approach. This is done by only perform-
ing the first swap which results in a reduction in TD before continuing evaluation.
It limits the number of attempts known as max neighbours to randomly select
and check if TD is reduced. This random selection gives CLARANS an advan-
tage when handling large datasets by avoiding local minima.

PAM Silhoutte (PAMSIL) [7] adapts the PAM algorithm to minimise the
Silhouette score [29] rather than the TD.

PAM Medoid Silouhette (PAMMEDSIL)[7] is a variation on PAMSIL
where Silhouette score is calculated by using the medoids rather than the arith-
metic mean.

FasterPAM [32] focuses on optimising the PAM swap stage. It does this by
combining optimisations made by FastPam1 [31] with a local hill-climbing ap-
proach that means any swap that reduces TD is immediately performed (eager
swapping). However, while a swap is performed for any candidate that reduces
TD, FasterPAM considers multiple candidates at a time in batches. The main
reason for this is it allows the FasterPAM to be better parallelised. In addition
FasterPAM uses the same technique for speed up that FastPam1 does by consid-
ering a swap across all medoids at once rather than a single medoid. This allows
for expensive conditional logic to be moved outside the inner most loop further
reducing computational time.

Faster Medoid Silhouette Clustering (FasterMSC) [18] is a variation on
PAMMEDSIL that combines FasterPAM with PAMMEDSIL.

3 Elastic Distance Measures

Time series require bespoke distance functions because small offsets between
series can lead to large distances between series that are conceptually similar.
Elastic distances compensate for misalignment by creating a path through a
cost matrix through either warping or editing time series. There have been many
elastic distances proposed that attempt to align time series in different ways. We
evaluate k-medoids with the nine elastic distance measures used in [22,12]. We
provide a very brief overview of one of the nine elastic distances and direct the
interested reader to these other publications [12,22,33]. The distance functions
we use (with associated parameter setting) are listed in Table 1.

The best performing distance function according to [12] is MSM, which we
briefly review below.

3.1 Move Split Merge (MSM)

At any step, elastic distances can use one of three costs: diagonal, horizontal or
vertical, in forming an alignment. The alignment path is a series of moves across
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Table 1. Summary of distance functions, their parameters and the default values.

Algorithm Acronym Parameters

Dynamic Time Warping DTW w = 0.2
Derivative DTW DDTW w = 0.2
Weighted DTW WDTW g = 0.05
Weighted derivative DTW WDDTW g = 0.05
Longest Common SubSequence LCSS ϵ = 0.05
Edit distance with Real Penalty ERP g = 0.05
Edit Distance on Real sequences EDR ϵ = 0.05
Move Split Merge MSM c = 1
Time Warp Edit TWE ν = 0.05, λ = 1

the cost matrix. DTW assigns no explicit penalty for moving off the diagonal.
Instead, it uses an implicit penalty (long paths have longer total distance) and
a hard cut off on window size to stop large warpings. An alternative family of
distance functions are based on the concept of edit distance. An edit distance
considers a diagonal move as a match, a vertical move as an insertion and an
horizontal move as a deletion. MSM [34] follows this structure, where move is a
match (diagonal), split is a insertion (vertical) and merge is deletion (horizontal).

The move operation in MSM uses the absolute difference rather than the
squared euclidean distance for matching in DTW. The cost of the split operation
is given by cost function C (Equation 3) with a call to C(ai, ai−1, bj , c). If the
value being inserted, bj , is between the two values ai and ai−1 being split, the
cost is a constant value c. If not, the cost is c plus the minimum deviation from
the furthest point ai and the previous point ai−1 or bj . The delete/merge is given
by C(bj , bj−1, ai, c), which is simply the same operation as split but applied to
the second series. Thus, the cost of splitting and merging values depends on the
value itself and adjacent values.

C(x, y, z, c) =

{
c if y ≤ x ≤ z or y ≥ x ≥ z
c+min(|x− y|, |x− z|) otherwise.

(3)

Algorithm 2 describes how to calculate the MSM distance between two time se-
ries a and b. MSM satisfies triangular inequality and is a metric. In Algorithm 2,
the first return value is the MSM distance between a and b, the second is the
cost matrix used to compute the MSM distance.

4 Methodology

The different TSCL methods are compared using the whole set of 112 univariate,
equal-length time series in the UCR archive [5]. Default train/test splits have
been used, with data normalised to zero mean and unit standard deviation prior
to the clustering stage. The training data is used to train an algorithm and the
performance is assessed on the testing set. The number of clusters, k, is equal



8 C. Holder, D. Guijo-Rubio, A. Bagnall

Algorithm 2 MSM(a (of length m), b (of length m), c (minimum cost))

1: Let CM be an m×m matrix initialised to zero.
2: CM1,1 = |a1 − b1|
3: for i← 2 to m do
4: CMi,1 = CMi−1,1 + C(ai, ai−1, b1, c)

5: for i← 2 to m do
6: CM1,i = CM1,i−1 + C(bi, a1, b+ i− 1, c)

7: for i← 2 to m do
8: for j ← 2 to m do
9: move← CMi−1,j−1 + |ai − bj |
10: split← CMi−1,j + C(ai, ai−1, bj , c)
11: merge← CMi,j−1 + C(bj , bj−1, ai, c)
12: CMi,j ← min(move, split,merge)

13: return CMm,m, CM

to the number of classes for classification. This choice is in line with the TSCL
literature, such as [12,17].

The performance of the different clusterers is evaluated using the following
measures: CLustering ACCuracy (CL-ACC) is the number of correct pre-
dictions divided by the total number of cases. For this, each cluster is assigned
to its best matching class value by taking the maximum accuracy from every
permutation of cluster and class value. The Rand Index (RI) measures the
similarity between two sets of labels such as the predicted and actual class val-
ues. An improved version known as Adjusted Rand Index (ARI) avoids the
inflation of the RI when dealing with a high number of clusters. For this, ARI
adjusts the RI based on the expected scores on a purely random model. The
Mutual Information (MI) score uses the entropy to measure the agreement
of the two clusterings or a clustering and a true labelling. Finally, Normalised
Mutual Information (NMI) rescales MI onto [0, 1].

Some of the results are expressed using an adaptation of the critical differ-
ence diagram [6], replacing the post-hoc Nemenyi test with a comparison of all
classifiers using pairwise Wilcoxon signed-rank tests, and cliques formed using
the Holm correction [2,9].

Experiments are run with the open source python software packages aeon,
tslearn [35], and kmedoids [30]. To enhance the reproducibility of this work,
specific code and a guide to reproduce results will be available after blind review,
as well as the results achieved.

The original PAM algorithm specifies a bespoke initialisation algorithm (build).
However, we found random initilisation with ten restarts to be as effective as
build, simpler and computationally less expensive. Given some PAM variants
specify the use of random initialisation (e.g. FasterPAM) for speed, we use the
same initialisation method for all algorithms in order to control factors of varia-
tion: we use random initialisation with ten restarts for all k-medoid and k-means
variants.
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The rationale behind using random initialisation is that random selection is
likely to pick points from dense regions. The reason for rerunning the model
multiple times with random initialisation and taking the best clusters (as mea-
sured by the sum of distances to their closest cluster centres) is that it reduces
the chance results are skewed by poor random initial selections. Ten restarts is
the most common number of restarts in the literature, and is the default value
when using Lloyds algorithm in scikit-learn.

5 Results

The issue of which distance function is better overall is covered in depth in [12].
Our concern with these experiments is to detect differences between the two
clustering algorithms over a range of distance functions. We focus first on the
difference between alternate k-medoids and standard k-means in Section 5.1. We
then evaluate a range of variants of the k-medoids algorithm in Sections 5.2 and
5.3. Finally, the best k-medoids variant is compared against several alternative
TSCL approaches in Section 5.4.

5.1 Alternate k-medoids vs k-means

Table 2 summarises the difference in performance of k-means and k-medoids
clustering algorithms. The mean difference is the average difference in the metric
over 112 datasets on the test data. There is no significant difference in accuracy
when using ED with the two clusterers (p value = 0.233 with a paired T-test
or 0.14 with a binomial test). k-medoids gives a significantly more accurate
clustering for all nine elastic clusterers (test with α=0.05 with paired t-test, sign
rank test and binomial test on wins/losses).

Table 2. Differences in CL-ACC, ARI and NMI between alternate k-medoids and k-
means using 10 different distance functions. A positive value indicates that k-medoids
is better. W/D/L figures are for CL-ACC.

Distance CL-ACC ARI NMI k-medoids wins k-means wins Ties

MSM 1.54% 1.22% 1.80% 59 47 6
TWE 2.78% 3.91% 3.65% 63 45 4
ERP 3.94% 4.35% 6.34% 66 33 13
WDTW 1.33% 1.94% 2.29% 66 42 7
DTW 3.88% 4.07% 5.72% 72 31 9
ED -0.38% -0.38% -0.38% 46 58 8
DDTW 7.65% 6.17% 11.68% 75 32 5
DWDTW 2.57% 1.52% 3.56% 64 38 10
LCSS 4.13% 3.55% 7.33% 73 35 4
EDR 4.50% 4.37% 7.04% 74 35 3
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NMI differences between k-medoids and k-means

Fig. 1. Distributions of the differences between alternate k-medoids and k-means on
the UCR data.

Figure 1 expands the data from Table 2 to show the distribution of differ-
ences for each distance measure. It shows a violin plot of the differences between
alternate k-medoids and k-means for 10 distance functions in terms of NMI. It
demonstrates that there is little difference when using ED. However, there is
wide variation between k-medoids and k-means for the nine elastic distances,
and the bulk of the distributions are positive.

These results indicate that, on average, the alternate k-medoids produces
better clusters than k-means using the arithmetic mean to compute new cen-
troids.

5.2 Alternate k-medoids vs PAM

The alternate technique used for the experiments in Section 5.1 is the simplest
and easiest k-medoids algorithm. However, in standard clustering, PAM is a
popular alternative and has found significantly better results than alternate k-
medoids. As such we repeated the same experiments using the PAM algorithm
described in Section 2.2 to see if the findings in standard clustering holds true
for time series data. Table 3 summarises the differences between alternate k-
medoids and PAM for each distance measure. With the exception of ERP, PAM
significantly outperforms alternate k-medoids.

5.3 PAM variants

PAM significantly outperforms both k-means and alternate k-medoids. However,
it is computationally more expensive. In Section 2.3, we describe several variants
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Table 3. Differences in CL-ACC, ARI, NMI between alternate k-medoids and PAM
using 10 different distance functions. A positive value indicates that PAM is better.
W/D/L figures are for CL-ACC

Distance CL-ACC ARI NMI PAM wins k-medoids wins Ties

MSM 1.75% 1.57% 1.56% 39 22 51
TWE 2.15% 1.51% 1.69% 59 31 22
ERP -2.34% -3.95% -3.95% 40 66 6
WDTW 1.92% 2.09% 2.15% 47 35 30
DTW 2.02% 1.62% 2.03% 57 36 19
DDTW 3.81% 4.41% 4.70% 67 38 7
DWDTW 3.26% 4.10% 3.58% 60 46 6
LCSS 0.31% -0.60% -0.22% 57 50 5
EDR 5.73% 5.91% 6.15% 76 32 4

of PAM meant to improve the runtime. Runtime complexity is a significant
consideration when working with time series data. As such we compare six PAM
variants to the original version when using MSM as a distance function. We
include the following variants:

1. clara [16] and clarans [25]: subsampling techniques.
2. fasterpam performs eager swaps, improves time to find swaps
3. pamsil [7]: uses silhouette score rather than TD.
4. pammedsil, fastermsc [7]: use medoids silhouette score.

Figure 2 shows the average ranks of these six clusterers in terms of CL-ACC and
NMI. PAM is significantly better than all variants except for fasterpam. Figure 3

7 6 5 4 3 2 1

3.3905 pam
3.5571 fasterpam
3.9429 clara
4.0619 clarans

4.2476pamsil
4.3762fastermsc
4.4238pammedsil

7 6 5 4 3 2 1

3.3619 pam
3.3905 fasterpam
4.0857 clara
4.1048 clarans

4.2381pamsil
4.3667fastermsc
4.4524pammedsil

(a) CL-ACC (b) NMI

Fig. 2. Average ranks for PAM and six variants, all of which use MSM distance.

shows the distribution of the differences between PAM-MSM and the variants.
As can be observed, for fasterpam most of the values are exactly 0, meaning
that there is no difference to PAM for most of the datasets. Nevertheless, for the
remaining five variants, boxplots generally are over the 0 value, indicating that
PAM is better in average.
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Fig. 3. Distributions of differences between PAM and the six variants. Positive values
indicate PAM is better than the variant.

5.4 Elastic PAM vs alternative TSCL methods

We switch from considering relative performance of variants of the same algo-
rithm to assess the absolute performance of PAM based clustering against pop-
ular TSCL alternatives. We compare performance of the following 10 clustering
algorithms.

1. k-means-DBA: k-means clustering with DTW barycentre averaging and
DTW distance assignment [27].

2. k-means-ED, k-means-MSM and k-means-TWE: k-means clustering
with arithmetic mean for centres, and ED, MSM and TWE distance assign-
ment, respectively.

3. k-shapes clustering [26].
4. Two-step Time series Clustering (TTC) [1].
5. alternate-MSM and alternate-TWE: alternate k-medoids clustering with

MSM and TWE distances (Lloyds algorithm).
6. PAM-MSM and PAM-TWE: PAM k-medoids clustering with MSM and

TWE distances.

Figure 4 shows the average ranks for three performance measures: CL-ACC,
ARI and NMI. Note that PAM-MSM and PAM-TWE form a top clique and are
significantly better than the other eight algorithms. Figure 5 summarises the
relative performance using a heatmap tool described in [13].

Figure 4 shows TWE and MSM outperform the other elastic distances over a
ranger of clustering metrics. [12] conducted a similar experiment over the same
elastic distances for k-means and alternating k-medoids models and found similar
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results. The reason TWE and MSM outperform other elastic distances was TWE
and MSM constrain the diagonal warping with a constant cost penalty [12].

In addition from Figure 4 k-means is outperformed by both PAM and alter-
nating k-medoids. The reason for this is during the averaging stage of k-means
the average time series computation ignores alignment of the time series and
thus a poor average (centre) is obtained [11].

Finally Figure 4 shows PAM across all our clustering metrics outperformed
every other approach. The reason for this is as Section 2 outlines alternating
only optimises the medoid from the current cluster assignment whereas PAM
considers all instances as potential new medoid for a cluster which leads to
better medoids being found.

10 9 8 7 6 5 4 3 2 1

4.1577 pam-twe
4.482 pam-msm

5.0811 alternate-msm
5.2477 alternate-twe
5.4459 kmeans-msm5.6667ttc

6.0811kmeans-twe
6.1667dba
6.2342k-shapes
6.4369kmeans-ed

10 9 8 7 6 5 4 3 2 1

4.0631 pam-twe
4.3649 pam-msm
5.2252 alternate-twe
5.2297 alternate-msm
5.3514 kmeans-msm5.7432dba

5.8153ttc
6.2658kmeans-twe
6.3649kmeans-ed
6.5766k-shapes

(a) CL-ACC (b) NMI
10 9 8 7 6 5 4 3 2 1

4.1667 pam-twe
4.3694 pam-msm
5.0045 alternate-msm
5.2523 kmeans-msm
5.3288 alternate-twe5.8198dba

5.8378ttc
6.2072kmeans-twe
6.3559kmeans-ed
6.6577k-shapes

10 9 8 7 6 5 4 3 2 1

4.1667 pam-twe
4.3829 pam-msm
5.1216 alternate-msm
5.1802 kmeans-msm
5.3468 alternate-twe5.5811dba

5.8784ttc
6.3018kmeans-twe
6.4369kmeans-ed
6.6036k-shapes

(c) ARI (d) Average MI

Fig. 4. Average ranks for 10 clustering algorithms using four performance measures.

Time series deep learning results are available the website associated with
[17]. They provide NMI results for over 300 different clustering algorithms on
the same UCR datasets we use. These are not directly comparable, since they
are averaged over five runs and there may be other experimental differences.
However, they can give some indication of relative performance. The best deep
learning approach of the more than 300 assessed, a convolutional neural net-
work with joint pretext loss and without clustering loss (key in their results
is res cnn joint None) achieved an average NMI of 0.3292. Average NMIs for
PAM-TWE and PAM-MSM are 0.3366 and 0.3316, respectively.

In the context of other popular TSCL algorithms shown in Figure 4, k-
medoids based approaches perform better than other approaches. In addition,
Figure 4 highlights the strength of TWE and MSM across multiple approaches.
Finally it is clear that using PAM based approaches with elastic distances yields
significantly better results.
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Fig. 5. Summary of performance measures for six of the clusterers described in Figure 4.
Each cell shows the mean difference between algorithms, the W/D/L counts and the
unadjusted p-value for a Wilcoxon sign-rank test.

6 Conclusions

Time Series Clustering (TSCL) with k-medoids has fallen out of favour in time
series machine learning research in recent years. We demonstrate that k-medoids
with elastic distance measures is highly effective, particularly PAM with TWE
or MSM distances. We have also demonstrated that PAM is more effective than
alternate k-medoids algorithm for most elastic distances and showed that PAM-
TWE and PAM-MSM are significantly better than popular TSCL alternatives,
and at least as good as the best known deep learning approach. Finally, we have
explored the variants of PAM that hope to address the run time and memory
complexity the traditional PAM algorithm suffered from. We found that the
recent FasterPAM [32] yields very similar results as PAM but achieves an O(k)-
fold speedup in the swap phase, making FasterPAM a much more attractive
alternative for TSCL.

In the future, we would like to further quantify the run time complexity of
these clusterers. We will then investigate the possibility of creating an ensem-
ble of elastic distances using k-medoids clusterer, similar to the elastic ensemble
classifier proposed in [22]. Furthermore, we would like to perform a similar ex-
periment with other clustering algorithms to if using TWE and MSM yields
significantly better results than traditional euclidean and DTW distances.
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