
Designing a New Search Space for Multivariate
Time-Series Neural Architecture Search

Christopher MacKinnon1 and Robert Atkinson1

University of Strathclyde, Glasgow, Scotland
christopher.mackinnon@strath.ac.uk

robert.atkinson@strath.ac.uk

Abstract. With the rise of edge computing and the Internet of Things
(IoT), there is an increasing demand for models with low memory foot-
prints. These models must be adaptable to embedded system applica-
tions, while being able to leverage the large quantities of data recorded
in these systems to produce superior performance.
Automatic Neural Architecture Search (NAS) has been an active and
successful area of research for a number of years. However, a significant
proportion of effort has been aimed at finding architectures which are
able to effectively extract and transform the information in image data.
This has lead to search space design which is heavily influenced by the
heuristics of image classifiers.
We review and incorporate the characteristics of successful time-series
methods, while seeking to address traits of conventional NAS search-
space design which may be detrimental to performance on time-series.
This paper provides an in-depth look at the effects of each of our design
choices with an analysis of time-series network design spaces on two
benchmark tasks: Human Activity Recognition (HAR) using the UniMib-
SHAR dataset and Electroencephalography (EEG) data from the BCI
Competition IV 2a dataset.
Guided by these design principles and the results of our experimental
procedure, we produce a search space tailored specifically to time-series
tasks. This achieves excellent performance while producing architectures
with significantly fewer parameters than other deep learning approaches.
We provide results on a collection of datasets from the UEA Multivariate
time-series Classification Archive and achieve comparable performance
to both deep learning and state-of-the-art machine learning time-series
classification methods, using a simple random search.

1 Introduction

Neural Architecture Search (NAS) is a method of automatic architecture dis-
covery and has been an active area of research for a number of years. Through
this process, a large space of possible models is traversed and evaluated in an
attempt to discover the optimal network architecture for a given domain task.
While automated architecture design is well studied with regard to image data,
its application to time-series problems has only recently begun to be investigated.



2 C. MacKinnon, R. Atkinson

NAS search spaces have evolved over time to contain a high density of
strong models. This has been achieved by adopting the principles that guide
manual architecture design and applying them to search space design. These
choices are easily seen when looking at cell-based search spaces such as NasNet
[1] and DARTS (Differentiable Architecture Search) [2], where repeating cells
are stacked often with residual connections between cells. When applying these
methods to a new domain, however, the heuristics which guided search space
design in one application may not be useful in another.

NAS search spaces can be considered restrictive in the diversity of models
contained within them. While these spaces are ”large” (DARTS for example is
of order 1018), many design choices are made to remove poor models from the
space, reducing its overall diversity. While this likely improves the convergence
speed and anytime performance of an architecture search, it limits the discovery
of truly novel architectures which do not conform to traditional architecture
design rules [3].

While deep learning approaches have begun to show promising results, partic-
ularly in multivariate time-series classification, the fidelity of these approaches is
still dependent on the quality of manually designed architectures. In the domain
of image classification NAS has achieved great success discovering architectures
which outperform human designed architectures. This is the case despite the
fact that top-performing architectures - and even parameterisations - often ex-
hibit greater transfer-ability across tasks as evidenced by the relative ease of
transfer learning compared with time-series classification [4]. The wide variety
of problem characteristics in time-series tasks — such as dataset size, signal
length, or discriminatory features — makes designing an optimal ‘one-size-fits-
all’ architecture a challenging proposition. This highlights the opportunities for
automatic architecture design methods which can discover architectures tuned
to the specific characteristics of a dataset.

This paper introduces a novel search space for time-series NAS, which achieves
competitive results compared with state-of-the-art (SOTA) time-series classi-
fication methods across a diverse set of multivariate time-series classification
challenges, with only the most rudimentary search algorithm. We draw on con-
cepts from successful time-series classification methods, as well as incorporating
the characteristics of modern convolutional vision networks, integrating them
into the design of a deep learning search space which produces highly efficient
architectures with strong performance for time-series classification.

2 Related Work

2.1 Time-Series Classification

Time-series classification tasks are dominated by models which can generate a
multitude of representations. A representation being a transform or encoding
of the raw time-series which may reveal useful patterns or information. Unlike
image classification models which often use deep repeating structures to extract



Designing a New Search Space for Multivariate Time-Series 3

complex features, successful time-series models - whether they are deep learning
or more traditional machine learning methods - are frequently characterised by
an emphasis on the ‘breadth’ of representations. The Hierarchical Vote Collective
of Transformation-based Ensembles (HIVE-COTE) [5] is a good example of this,
achieving SOTA performance by ensembling the predictions of a broad range of
classifiers. Rocket [6] and Canonical Interval Forest (CIF) [7] are other examples
of a focus on a diverse set of representations. These feature based methods, apply
a large collection of randomly generated transforms to produce features. These
features can then be used by a relatively simple classifier to achieve impressive
results.

2.2 Deep Learning for Time-Series

The application of deep learning techniques to time-series classification has
gained increasing attention in recent years. One of the earliest works in this
area is the study by Wang et al [8] who proposed a deep learning framework
for time-series classification and compared convolutional neural networks (CNN)
with Multi-Layer Perceptrons (MLP), specifically looking at a ResNet architec-
ture and Fully Convolutional Networks (FCN). The authors demonstrated the
effectiveness of their proposed method on the set of UCR uni-variate time-series
problems.

In the study by Fawaz, Lucas, Forestier, et al. [9], the authors proposed
the use of InceptionTime, a modification of the Inception architecture designed
specifically for time-series classification. This achieved strong performance in
multivariate time-series classification tasks. The novel feature of InceptionTime
is its use of parallel 1D convolutional filters. The kernels of these convolutions
vary in length from 10 to 40, allowing the model to capture and extract patterns
at various time scales in the signal.

The success of this approach shows again the importance of a broad set of
representations but also the value in extracting information at different time
scales for successful performance across diverse problems. We aim to leverage
these insights in the application of NAS to discover effective architectures tai-
lored to specific problems.

2.3 Neural Architecture Search

NAS can be considered as a subset of the general problem of hyperparame-
ter optimisation. In a general sense, it frames any machine learning task as a
bi-level optimisation problem, wherein both a set of parameters weights and hy-
perparameters settings are optimised w.r.t to the training and validation losses
respectively. This is given by Equations 1 and 2, where θ is the parameters of a
model and λ is the architecture configuration, with θ∗ and λ∗ being the optimal
value of each respectively.

λ∗ = argmin
λ

Lvalidation(θ
∗(λ), λ) (1)



4 C. MacKinnon, R. Atkinson

s.t. θ∗(λ) = argmin
θ

Ltrain(θ, λ) (2)

Initial approaches to architecture search within deep learning typically opti-
mised the number of layers and the operation on each layer using a fixed model
topology. This formulation is easily mapped to general hyperparameter opti-
misation methods with the number of layers, channels or kernels sizes being
individual hyperparameters.

Although some early work in neuro-evolution searched for simple models in
topological spaces such as NEAT [10], a significant innovation in the develop-
ment of NAS was to search for models in a topological space. Many of these
approaches used ‘factorised’ spaces such as hierarchical spaces or more famously
cell-based spaces and achieved significant success [11][1]. In this type of approach
architectures are constructed from repeating blocks which follows the character-
istics of successful human designed architectures. The overall aim of this is to
remove a large quantity of poorly performing architectures from the space while
retaining the majority of strong networks, which conform to these heuristics.

[C,L]

0

1

2 3
Down Sample

(L/2)

[2C,L/2]

0

1

2 3

(a) Cell Macro Structure: Down-sampling happens at fixed intervals in-between cells

C,L ... ... C,L/2 C,L/4 ... C,L/8 ... ... C,2

(b) Our Graph Space Macro Structure: Dynamic down-sampling through-out model.

Fig. 1: Comparison of down-sampling and network structure in a cell-based
search space and in our graph space.



Designing a New Search Space for Multivariate Time-Series 5

3 Designing a new Search Space

In this section, we introduce a novel search space designed specifically for the
characteristics of time-series data, which aims to effectively handle a wide range
of signal lengths and produce a diverse set of transforms akin to what we see in
other successful time-series methods. Figure 1 shows the traditional cell-based
space compared with our approach.

In conventional cell-based network structure, down-sampling of the input
signal is coupled to the network depth occurring at fixed intervals between cells.
In contrast, our approach incorporates this down-sampling into the architecture
search. The advantages of this are twofold: firstly, it allows for the extraction
of features at multiple signal resolutions in parallel, where computation can be
performed at the most effective granularity for different discriminatory features.
Secondly, it avoids the need for very deep networks when dealing with long signal
lengths or manual tweaks to the down-sampling operations for specific tasks.

We define a model topology where configurations are described in terms of
a Directed Acyclic Graph (DAG) that defines the edges and connectivity of
an architecture, as well as a set of operations with one corresponding to each
of the defined edges. A valid architecture can be constructed from any DAG
where the start and end nodes are connected via all paths. In order to generate
a wide range of topologies, which conform to this specification, we propose an
iterative method. Starting with a simple DAG containing 3 vertices (S,1,T) each
connected by a single edge, we randomly apply one of two operations, “edge
insertion” or “edge split”. Alg. 1 describes a single iteration of this process with
Fig. 2 showing this process over multiple iterations.

Add Node

(Edge Split)

Add Edge Add Edge

Fig. 2: Three iterations of the graph generation algorithm adding a new node
in the first step, and a new edge in the subsequent iterations. Changes are
highlighted in red.

3.1 Operation Chain

To further enhance the range of architectures that can be expressed in the search
space, aspects that are often part of the primitive operations or simply built into



6 C. MacKinnon, R. Atkinson

a fixed macro architecture are brought into the search space. This work innovates
on the standard DAG representations of neural architectures, with the inclusion
of node attributes.

Previous implementations like DARTS or NasNet primarily focused on edge
attributes, i.e., the primitive operations. Our approach expands on this by asso-
ciating attributes such as the normalisation, activation function, channel width
(number of channels) and down-sampling (stride) to the node rather than an
edge. An example of this is an edge (1,3) and (2,3), which will have the same
node attributes, due to their common destination at node 3.

Fig. 3 provides a visualisation of this operation chain and the assignment of
attributes to edges or nodes.

Primative
Operation

Channel
Change

Resolution
ChangeNormalisation Activation

Edge Attribute's Node Attribute's

Combine
OperationDropout

Fig. 3: Chain of operations in a compiled edge

Adjustments in the number of channels or resolution are implemented through
the use of point-wise and depth-wise convolutions, respectively. Where the lat-
ter has a kernel size equal to its stride. These changes in resolution and channel
width are propagated downstream to all subsequent edges and nodes. Figure 4
shows an example, if node A contains a down-sample of signal length L by a
factor of two, and there exists an edge (A,B), then the operation of this edge
will act on and produce data of size (C,L/2) assuming no changes to the channel
width. This means that B will be of size (C,L/2). If another node C connects
to B and has a signal length of L, then a down-sample operation will be added
here also to produce two signals of the same length. This feature increases the
flexibility of the generated architecture, allowing it to adapt to signals of varying
lengths.

4 Benchmarking Tasks

In order to draw broadly useful conclusion about NAS search spaces for time-
series problems we look at two time-series classification tasks from disparate
domains.

4.1 Human Activity Recognition (HAR)

Human Activity Recognition is the task of classifying actions such as walking,
running, jumping, as well as falls through the use of gyroscopic data. Among



Designing a New Search Space for Multivariate Time-Series 7

A

C,L

B

C

C,L/2 C,L/2

C,L

Fig. 4: Example of down-sampling operations and the propagation of signal
length to subsequent nodes. Dashed lines indicate where a node contains a
down-sample operation, dotted line indicates when a down-sample operation
is induced.

members of the population who are over 65, falls are a common risk and can
have severe consequences with the frequency only becoming larger with age.
Undetected these falls can result in hospitalisation or, in the worst case, be
fatal.

The UniMib-SHAR dataset is a benchmark for human activity recognition
(HAR) collected by the University of Milano-Bicocca [12]. The dataset contains
data from 30 subjects, both male and female aged 18 - 60, performing activities of
daily living (ADL), such as standing, walking and sitting, as well as a collection of
falls, while wearing a smartphone on their waist. The smartphone’s accelerometer
and gyroscope sensors capture three-axial linear acceleration and three-axial
angular velocity, respectively. This dataset can be used for 4 classification tasks:

– (AF-17) - Distinguishing all 17 fine-grained classes from the ADL and FALL
categories

– (AF-2) - Binary classification of ADLs and FALLs

– (A-9) - Classifying the 9 ADL fine-grained classes

– (F-8) - Classifying the 8 FALL fine-grained classes

In this paper we look specifically at the AF-17 scheme which is considered the
most challenging task, with data being split based on subjects unless specifically
stated otherwise.

4.2 Electroencephalography (EEG)

The BCI Competition IV 2a dataset is a widely used electroencephalography
(EEG) dataset, collected as part of the Brain-Computer Interface (BCI) Com-
petition IV. It comprises EEG recordings from 9 subjects, each performing 4
different motor imagery tasks: left hand, right hand, both feet and tongue move-
ments. The dataset contains 22 EEG channels and 3 electrooculography (EOG)
channels, sampled at 250 Hz, with each trial lasting approximately 8 seconds. In
this paper we use only the 22 EEG channels.



8 C. MacKinnon, R. Atkinson

Algorithm 1 Generate Graph Iteration

procedure gen iter(edges, rate)
g ← DiGraph(edges)
if random() > rate then ▷ Add an edge

sorted nodes← TopologicalSort(g)
number valid← len(sorted nodes)− 1
source index← RandInt(0, number valid)
new source← sorted nodes[source index]
existing ← Neighbors(g, new source)
valid← sorted nodes[source index+ 1 :]
valid← valid.remove([existing, ”S”])
new end← RandomChoice(valid)
edges.append((new source, new end))

else ▷ Add a node (Edge split)
edge← random.choice(edges)
new id← len(edges) + 1
idx← edges.index(edge)
edges[idx]← (edge[0], new id)
edges.append((new id, edge[1]))

end if
return list(set(edges))

end procedure

Table 1: Summary of the dataset properties
Dataset Samples Dimensions Timesteps

EEG Train Data 2328 22 1750
EEG Test Data 2368 22 1750
SHAR Train Data 10541 3 151
SHAR Test Data 1230 3 151

5 Method

In order to make comparisons of different search spaces we adopt a method
utilised in the analysis of design spaces for image classifiers [13] [14]. We perform
a random sampling of architectures (Random Search) in each search space on a
set of tasks, comparing the Cumulative Distribution Function (CDF) — which
gives the probability that a random observation will be less than or equal to a
certain value. This gives us a more robust comparison between two spaces than a
single point estimate, such as the single best performing model. By performing a
series of experiments following this methodology, the goal is to find a search space
of strong performing architectures for time-series classification by iteratively
improving the search space at each step.

This is conducted as a random search evaluating 500 models over our two
datasets. Each model has a fixed stem size of 32 channels, with a Global Av-
erage Pooling (GAP) and fully connected linear layer as the output. We define
both spaces, the cell-based and graph search-spaces to have 32 edges for which



Designing a New Search Space for Multivariate Time-Series 9

operations are searched. Each model is trained with a batch size of 256 for 200
epochs, with the learning rate decaying from 0.01 to 1 × 10−5 throughout the
training process, based on the cosine annealing strategy.

5.1 Experiment 1: Understanding the Role of Width Multipliers
During Down Sampling in Graph and Cell-Based Topologies

Fig. 5: Effects of different width multipliers on graph and cell based topologies
across search spaces

As we have seen in Section 2.1, in comparison with Image tasks, time-series
models generally make use of shallower networks favoring a wide variety of rep-
resentations. However, time-series tasks can also have a large variety of signal
lengths, adding an additional challenge to architecture design. Cell-based NAS
architectures down samples the resolution or signal length at the end of specific
’reduction cells’, increasing the number of channels to maintain the capacity.
This approach however can lead to challenges in the context of time-series data,
due to the coupling of signal down-sampling and network depth. We compare
the effects on a cell based search space, based on implementation of [2] with our
graph based search space. We use 4 cells, with down-sampling occurring after
each cell, maintaining the same number of operations (32) in both search spaces.

Figure 5 shows the CDF of architecture error of the DARTS search space
compared with our graph based search space over a range of down-sample width
multipliers. We can see that in the case of the cell search space the optimal width
multiplier seems to vary according to dataset, with a constant width performing
consistently poorly. In contrast, this setting seems to have little effect on the
graph search space.

The effect of these settings on the number of model parameters is also sig-
nificant with a difference of around 1 order of magnitude between models of
different width multipliers.



10 C. MacKinnon, R. Atkinson

Moving forward we use the graph based architecture with a wide multiplier
of 1 as the basis for further experiments.

5.2 Experiment 2: Breaking out of the Separable Convolution
(Depth-wise and Point-wise Operations)

Fig. 6: Effects of breaking out the separable convolution operation across datasets

While depth-wise and point-wise convolutions are commonly used in NAS
as constituent parts of the separable convolution to build more efficient archi-
tectures, we propose breaking the fundamental convolution operation down to
the depth-wise and point-wise convolution. These operations are significantly
less computationally demanding as each operation now contains a single convo-
lution operation rather than the 4 convolutions in a separable convolution. In
ViT architectures, we also see a separation of spatial and channel-wise infor-
mation mixing, which may be a beneficial trait. Specifically in the context of
multivariate time-series data, the input features may contain information which
is not temporally aligned across channels, which could make channel mixing to
be counter productive at certain stages in the model.

In order to have this approach be effective we also break out the activation
and normalisation functions from the primitive operations. Taking inspiration
for the ConvNeXt [15] results, we include 2 ’none’ operations for each activation
and normalisation function, to produce networks with roughly 1 activation and
normalisation in every 3 primitive operations.

We can adjust for the reduction in model capacity by increasing the number
of edges in our architecture, allowing for a more diverse set of architectures at
the same or lower computational cost. We also maintain the same distribution
of operations for random sampling by introducing each of the depth-wise and
point-wise convolutions into the operation pool four times for each kernel. The
dropout rate was also reduced by a factor of 4 to maintain the same total dropout
across each network.



Designing a New Search Space for Multivariate Time-Series 11

Figure 6 shows the effects of these changes on the two datasets. Here we can
see improvements across the board.

5.3 Experiment 3: Kernel Size and Dilation

Fig. 7: Effects of using large kernel sizes on model performance across datasets

The use of dilation in convolutional networks for time-series is well estab-
lished as an effective method of increasing the receptive field without exploding
the number of parameters. This has shown success in a broad range of tasks and
model types pertaining to time-series, with WaveNet [16] showing its applica-
tion to deep learning and more recently ROCKET showing the effectiveness of
dilated convolution kernels as feature extractors for more traditional machine
learning approaches. We introduce kernels with a set of exponential dilation’s
(2,4,8,16,32) to the search space.

To further expand the search space we also add larger kernel sizes which
has shown success in both image and time-series applications. We again add
kernels of exponential sizes (reduced by one for padding) at 15,31,63. We also
add pooling at these kernel sizes. Again we maintain the proportion of pooling,
skip and convolution operations when adding the new operations to the pool of
primitives.

Figure 7 shows the results of these large kernels on our datasets. Unlike
with the previous change the results here are more mixed with a significant
improvement on one dataset and a slight deterioration in another. These results
are understandable due to the significantly shorter signal length of the SHAR
dataset. This means a significant number of the kernels are larger than the entire
signal even before down-sampling.



12 C. MacKinnon, R. Atkinson

6 Results

We now show the performance of our new search space across a number of
datasets. We randomly partition the dataset into a train, validation and test
dataset. We use the simple random search algorithm [17], run for 500 iterations
to select the architecture for each task. Each architecture is evaluated twice to
improve quality of the evaluation, with the hyperparameters described in Section
5. The results of the final architecture on a holdout test set is reported as the
mean accuracy of 10 training runs. Each search was run across 4 GPUs with
all the architectures trained from scratch. Each search took between 3 and 24
hours to complete, depending on the characteristics and size of the dataset. Note
that the search algorithm itself is intentionally rudimentary without any proxy
evaluation methods to produce baseline performance estimates.

6.1 UniMib-SHAR

Table 2 presents the results obtained from two different schema: a ‘subject-based
split’ and a ‘random split’. In the ‘subject-based split’, no subject appears in
more than one of the train, validation, or test sets. The random split is a standard
random division of the data. The search was run for each approach separately.

The results compare the state of the art methods on this task with the
discovered architecture. An improvement in both categories can be seen in terms
of accuracy. A new SOTA is achieved with 95.7% accuracy in the random split,
improving the accuracy by over 3% on the previous best, as well as a more
modest 77.6% accuracy in the subject-based split. This was achieved while also
producing models with a significantly lower number of parameters than reported
by other approaches.

Table 2: UniMib-SHAR: Discovered architecture vs SOTA
Method Subject-Based Split Random Split Parameters

Gao, Zhang, Teng, et al. 2021[18] - 79.03 2.40M
Mukherjee, Mondal, Singh, et al. 2020[19] - 92.60 -
Al-qaness, Dahou, Elaziz, et al. 2023[20] 77.29 84.99 2.40M
Helmi, Al-qaness, Dahou, et al. 2023[21] - 86.08 -

Teng, Wang, Zhang, et al. 2020[22] - 78.07 0.55M
New Search Space 77.63 95.70 0.10M

6.2 EEG

Next, we look at the EEG dataset; here we look at a random split, looking for
general accuracy over the entire dataset. In the literature, it is more common
to use subject-specific models as they tend to provide improved performance on



Designing a New Search Space for Multivariate Time-Series 13

the particular subject, however, this involves the training of many different spe-
cialised models. We compare our approach with ResNet [8] and InceptionTime
[9], both providing a strong baseline performance for deep learning models on
time-series classification. These are implemented with 32 channels and an addi-
tional 64 channel version for InceptionTime. Table 3 shows the accuracy of our
approach compared with the benchmark models. We see a significant disparity in
performance here, with ResNet in particular struggling to find a good solution.

Table 3: EEG: Discovered architecture vs Deep Learning Approaches
Method Random Split Parameters

ResNet 35.89 0.95M
InceptionTime (32) 49.08 0.48M
InceptionTime (64) 50.22 1.89M
New Search Space 66.98 0.12M

6.3 UEA Multivariate time-series Classification Archive

We compare our search space to the SOTA time-series classification methods on
a subset of the time-series classification archive. Due to the additional compli-
cations involved with performing NAS with small dataset sizes - which is out of
scope for this paper - we look specifically at the 4 largest datasets in terms of
number of samples. These are specifically the four largest multivariate datasets
with equal length in the time-series classification archive to allow for compar-
ison with the baseline experiments [23]. We conduct a search on each dataset
separately. Table 4 shows the results of our new search space compared with
SOTA time-series methods evaluated in Middlehurst, Large, Flynn, et al. [5] as
well as deep learning approaches from Ruiz, Flynn, Large, et al. [23]. Our search
space produces models which perform well compared with current state of the
art, losing in average rank to only InceptionTime.

Table 4: UEA (Resamples) - Multivariate time-series Classification Archive:
SOTA methods compared random sampling of new search space

Method FaceDetection LSST PenDigits PhonemeSpectra Average Rank

HC2 71.35 63.70 99.56 29.43 3
ROCKET 69.38 61.85 99.57 27.03 4.25

HC1 69.17 53.84 97.19 32.87 4.25

ResNet 62.97 42.94 99.64 30.86 5.25
InceptionTime 77.24 33.97 99.68 36.74 2.5

TapNet 52.87 46.33 93.65 - 6.33

New Search Space 75.01 63.68 99.6 29.84 2.75



14 C. MacKinnon, R. Atkinson

7 Further Work

This work outlines a new search-space for NAS which is both performant and
adaptable to the diverse set of characteristics presented in time-series classifi-
cation problems. We present results based on a simple random search of archi-
tectures. This gives an indication of baseline performance, which can be build
upon in subsequent research. One main direction for further work is the design
of optimisation algorithms for this space. Another avenue for future research
is the discovery of efficient proxies for evaluation. Common methods such as
super-networks are challenging to apply due to the unbounded nature of the
search-space, as well as the low-data environments common to this domain.

8 Conclusion

We introduce a search space specifically designed for time-series classification
tasks, which not only achieves competitive results compared with the SOTA but
also produces highly efficient architectures with fewer parameters than other
deep learning approaches. We search a more granular space than previous ap-
proaches, describing a larger diversity of models, which are dynamic to the task
signal length. We introduce the use depth-wise and point-wise convolution as
the primitive convolution operations in NAS and show that very large kernels
with extensive dilation are effective for some problems.

Without the use of an advanced search algorithm or efficient proxy evalu-
ations we achieve strong results on a range of problems. We set a benchmark
for further work showing that with a well designed search-space NAS has strong
potential as a time-series classification approach.

References

[1] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable
architectures for scalable image recognition, 2018. doi: 10.48550/ARXIV.
1707.07012. arXiv: 1707.07012 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/1707.07012.

[2] H. Liu, K. Simonyan, and Y. Yang, DARTS: Differentiable architecture
search, 2019. arXiv: 1806.09055 [cs.LG].

[3] S. Schrodi, D. Stoll, B. Ru, R. Sukthanker, T. Brox, and F. Hutter, To-
wards discovering neural architectures from scratch, 2022. arXiv: 2211.
01842 [cs.LG].

[4] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Transfer learning for time series classification,” in 2018 IEEE Interna-
tional Conference on Big Data (Big Data), 2018, pp. 1367–1376. doi:
10.1109/BigData.2018.8621990.

[5] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bag-
nall, “Hive-cote 2.0: A new meta ensemble for time series classification,”
Machine Learning, vol. 110, no. 11-12, pp. 3211–3243, 2021.



Designing a New Search Space for Multivariate Time-Series 15

[6] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally fast
and accurate time series classification using random convolutional kernels,”
Data Mining and Knowledge Discovery, vol. 34, no. 5, pp. 1454–1495, 2020.

[7] M. Middlehurst, J. Large, and A. Bagnall, “The canonical interval forest
(cif) classifier for time series classification,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 188–195. doi: 10.1109/
BigData50022.2020.9378424.

[8] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International Joint
Conference on Neural Networks (IJCNN), 2017, pp. 1578–1585. doi: 10.
1109/IJCNN.2017.7966039.

[9] H. I. Fawaz, B. Lucas, G. Forestier, et al., “InceptionTime: Finding AlexNet
for time series classification,”Data Mining and Knowledge Discovery, vol. 34,
no. 6, pp. 1936–1962, Sep. 2020. doi: 10.1007/s10618-020-00710-y.
[Online]. Available: https://doi.org/10.1007%2Fs10618-020-00710-y.

[10] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–
127, 2002. doi: 10.1162/106365602320169811.

[11] R. Miikkulainen, J. Liang, E. Meyerson, et al., Evolving Deep Neural Net-
works, 2017.

[12] D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: A dataset for
human activity recognition using acceleration data from smartphones,”
Applied Sciences, vol. 7, no. 10, 2017, issn: 2076-3417. doi: 10.3390/
app7101101. [Online]. Available: https://www.mdpi.com/2076-3417/7/
10/1101.

[13] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollar, “Design-
ing network design spaces,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

[14] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, On network
design spaces for visual recognition, 2019. arXiv: 1905.13214 [cs.CV].

[15] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986.

[16] A. v. d. Oord, S. Dieleman, H. Zen, et al., “Wavenet: A generative model
for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–
305, 2012.

[18] W. Gao, L. Zhang, Q. Teng, J. He, and H. Wu, “Danhar: Dual atten-
tion network for multimodal human activity recognition using wearable
sensors,” Applied Soft Computing, vol. 111, p. 107 728, 2021.

[19] D. Mukherjee, R. Mondal, P. K. Singh, R. Sarkar, and D. Bhattacharjee,
“Ensemconvnet: A deep learning approach for human activity recognition
using smartphone sensors for healthcare applications,” Multimedia Tools
and Applications, vol. 79, pp. 31 663–31 690, 2020.



16 C. MacKinnon, R. Atkinson

[20] M. A. A. Al-qaness, A. Dahou, M. A. Elaziz, and A. M. Helmi, “Multi-
resatt: Multilevel residual network with attention for human activity recog-
nition using wearable sensors,” IEEE Transactions on Industrial Informat-
ics, vol. 19, no. 1, pp. 144–152, 2023. doi: 10.1109/TII.2022.3165875.

[21] A. M. Helmi, M. A. Al-qaness, A. Dahou, and M. Abd Elaziz, “Human
activity recognition using marine predators algorithm with deep learning,”
Future Generation Computer Systems, vol. 142, pp. 340–350, 2023.

[22] Q. Teng, K. Wang, L. Zhang, and J. He, “The layer-wise training convo-
lutional neural networks using local loss for sensor-based human activity
recognition,” IEEE Sensors Journal, vol. 20, no. 13, pp. 7265–7274, 2020.

[23] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great
multivariate time series classification bake off: A review and experimental
evaluation of recent algorithmic advances,” Data Mining and Knowledge
Discovery, vol. 35, no. 2, pp. 401–449, 2021.


