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Abstract. Trajectory Prediction has received much attention in recent
years due to the deployment of autonomous vehicles in real-world scenar-
ios. With it, many works have addressed challenges in producing more
reliable trajectory predictions. While modeling and representation of tra-
jectory prediction have evolved to address its spatiotemporal complexi-
ties, its evaluation has primarily remained primitive. The most current
methods provide rich probabilistic spatiotemporal outputs. However, the
evaluation metrics used to assess such rich outputs evaluate limited as-
pects of the predictive distribution, making evaluation and comparison
of models uninformative and sometimes even misleading. We propose
using the Energy Score as a distribution-aware alternative to frequently
used metrics in the trajectory prediction literature, such as minFDE and
minADE. Energy Score is a strictly proper scoring rule more commonly
known and used in the forecasting community. We present the formu-
lation of the energy score for spatiotemporal data and showcase its ca-
pabilities through preliminary empirical results supporting our proposal.
By introducing the energy score as an alternative evaluation metric for
trajectory predictions, we aim to enhance the assessment of trajectory
prediction models and foster more informative and reliable comparisons
among different approaches.

Keywords: Trajectory Prediction · Energy Score · Distribution-aware
Evaluation.

1 Introduction

Trajectory prediction has gained significant attention in recent years due to the
increasing deployment of autonomous vehicles in real-world scenarios. As a re-
sult, numerous studies have focused on addressing the challenges associated with
generating more reliable trajectory predictions [1, 6, 10–12,14, 16, 18]. While the
modeling and representation of trajectory prediction have evolved to handle the
spatiotemporal complexities involved, the evaluation of these predictions has re-
mained relatively primitive. Current trajectory prediction methods often provide
⋆ Supported by University of Tartu.
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rich probabilistic spatiotemporal outputs. However, the evaluation metrics com-
monly used to assess such outputs, such as minimum Final Displacement Error
(minFDE) and minimum Average Displacement Error (minADE), evaluate only
limited aspects of the predictive distribution. [15] provides a summary showing
that most of the works rely on these metrics, and the trend has continued to this
date. As an example, the leaderboard of ETH/UCY1, one of the most famous
datasets, ranks the state-of-the-art (SOTA) methods based on these metrics. A
common choice of evaluation seems to have been stuck with the literature from
the initial work that introduced the dataset [4]. Limitations of these metrics can
lead to uninformative and sometimes misleading evaluation and comparison of
different trajectory prediction models as pointed out in [8].

Inspired by advancements in the forecasting literature, particularly scenario
forecasting, we propose using Energy Score as a distribution-aware alternative
to conventional evaluation metrics in trajectory prediction. Energy Score has
a relatively long history in the forecasting community as a multivariate scoring
rule, and one of the latest studies shows its capabilities compared to other multi-
variate measures [19]. It offers a more comprehensive evaluation of the predictive
distribution by capturing its probabilistic characteristics. By incorporating it as
an evaluation metric for trajectory predictions, we aim to enhance the assess-
ment of multimodal trajectory prediction models to enable a more informative
and reliable comparison among different approaches. In this paper, we present
different formulations of the Energy Score specifically tailored for spatiotemporal
data. Our main contributions can be summarized as follows:

1. Proposing three different variations of the Energy Score for evaluating mul-
timodal trajectory predictions

2. Designing an experimental setup showcasing the desired behavior of the En-
ergy Score in evaluating multimodal trajectory predictions, demonstrating
its potential as a more powerful alternative evaluation metric.

The code to our experiments is available at https://github.com/novinsh/tra
jectory prediction evaluation via energy score.

2 Background

Trajectory prediction is relevant in many contexts and applications, such as in
robotics and autonomous vehicles. For example, an autonomous vehicle has to
interact with the environment where other agents and objects could be present,
and predicting their trajectories is crucial to operating in an environment. Cogni-
tion and planning tasks such as collision avoidance rely on trajectory prediction.
This is even more important in safety-critical environments as the cost of in-
accurate trajectory prediction could be detrimental to the relevant downstream
tasks/decisions, or similarly, the benefit of an accurate one could be highly re-
warding. Here we provide a formal definition of the terms central to our work.
1 https://paperswithcode.com/sota/trajectory-prediction-on-ethucy

https://github.com/novinsh/trajectory_prediction_evaluation_via_energy_score
https://github.com/novinsh/trajectory_prediction_evaluation_via_energy_score
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Trajectory A trajectory consists of a sequence of spatial variables with the
dimensionality of S, encoding the coordinates of an agent throughout time. The
sequence can be divided into past and future: {Y past

i , Y τ
i }, where Y past

i = {Y t
i |t ∈

[1, Tobs]} is the observed trajectory with Tobs time steps, and Y τ
i = {Y t

i |t ∈ τ} is
the future path with Tpred time steps, τ = (Tobs, Tobs + Tpred], and i is the index
of the trajectories from N unique or non-unique agents. In our work, Y t

i ∈ R2

because we consider S = 2. A trajectory can be seen as a multivariate time
series, which in our case, consists of two time series coupled based on a spatial
dependency.
Trajectory Prediction A trajectory prediction aims to predict K future tra-
jectories Xτ

i = {Xt
i,k|k = 1, . . . , K} from the observed information in the past

or available cues as covariates in τ . Xi is a spatiotemporal random variable, and
in this work, we consider the K trajectories to be independent samples of the
predictive joint distribution FXi(x) over the future trajectories 2. FXi(x) is a
Tpred × S multivariate distribution, and hence to be able to capture its modali-
ties, K must be sufficiently large. K = 1 corresponds to a deterministic forecast
as opposed to K > 1 as a multimodal (probablistic) forecast.
Trajectory Evaluation A trajectory evaluation is a process to assess how well
trajectory predictions Xτ

i follow the ground truth Y τ
i . A distribution-aware eval-

uation aims at minimizing |FXi(x)−GYi(y)|, which is some measure of distance
between the two distributions that would inform the quality of the predicted
trajectory distribution.

Common Evaluation Metrics In reality, we observe one sample y per each
agent for its future ground truth that is Tpred × S dimensional. Final Displace-
ment Error (FDE) and Average Displacement Error (ADE) are two of the most
common measures of trajectory prediction’s quality that are not distribution-
aware but can be applied to the samples obtained from the predictive distribu-
tion FX are as follows:

DE(FX, y) =∥X − y∥2 (1)
ADE(FX, y) =Ei,k,t∈τ DE(Xt

i,t, yt
i) (2)

FDE(FX, y) =Ei,k,t=T DE(Xt
i,k, yt

i) (3)

minADE(FX, y) =Ei,t∈τ min
k<K

DE(Xt
i,k, yt

i) (4)

minFDE(FX, y) =Ei,t=T min
k<K

DE(Xt
i,k, yt

i) (5)

2 Broadly speaking the predictive distribution can be represented explicitly or im-
plicitly with different computational and approximation implications depending on
the modeling technique. In either case, the K i.i.d. samples of the predictive distri-
bution allow for a universal and non-parametric evaluation, however, the sampling
itself could be a costly process, but that is out of the scope of our work.
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The minimum versions in Eq. 4 and 5 are referred to as Minimum of N (MoN)
and introduced by [6], and they are categorized as lower-bound metrics by [8].
They are also referred to as topK and topK%, where in the latter, instead of a
specific number, a percentage of the K trajectories are chosen for the error cal-
culation. The final displacement error variations only consider the last timestep
of the trajectory T = Tobs + Tpred.

Proper Scoring Rule A scoring rule provides a summary measure for evaluat-
ing probabilistic predictions. At the same time, a scoring rule could be considered
a cost or loss function that evaluates a prediction and outputs a cost or score.
The score could be used to compare different predictions or prediction models
with one another. The minimum score is realized when the true set of probabil-
ities is reported by the prediction model. A scoring rule is proper if it satisfies
this property as defined in Definition 1. We provide this definition based on [5].

Definition 1. A negatively oriented strictly proper scoring rule S maps a prob-
ability distribution F and a realization y to a real number, i.e., S(F, y). The
expected value of S(F, .) under Q, is written as S(F, G) where y ∼ G. A scor-
ing rule is strictly proper if S(F, G) ≥ S(G, G) with the equality if and only if
F = Q, and proper if S(F, G) ≥ S(G, G) for all F and G.

Because of this property, a strictly proper scoring rule is not only useful for
evaluation but also for learning and optimization of a probabilistic model as it
encourages the model towards optimal prediction.

3 Energy Score as a Distribution-aware Metric

Energy Score was introduced by [5] and they showed that it is a multivariate
generalization of Continuous Ranked Probability Score (CRPS) [7,13] and it is a
strictly proper scoring rule. Even though CRPS is suitable for probabilistic eval-
uation, it is a univariate scoring rule and hence not appropriate for evaluating
multivariate time series. Energy Score is rooted in Energy Distance formulated
originally by [17], where they provide a unifying theory of energy statistics and
discuss different properties and use cases of the energy distance in depth. They
adopted the name energy inspired by the notion of Newton’s gravitational po-
tential energy, which is a function of the distance between two bodies. Similarly,
energy statistics are functions of the distance between two statistical observa-
tions, with the statistical potential energy being zero if and only if the underlying
null hypothesis is true.

3.1 Energy Score for Trajectory Evaluation

Since trajectories are essentially a multivariate time series, we can adopt energy
score as a multivariate scoring rule to evaluate trajectories. In the time series
forecasting literature, the energy score is usually applied to a single time series,
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reporting on the marginal and temporal interdependence of the time series. It
is deemed a multivariate evaluation since the temporal variables are evaluated
jointly. In the case of 2D trajectories, the energy score is to be applied to two
spatially coupled time series. Therefore, the time series is multivariate in the
temporal and spatial sense. So, the energy score has to evaluate all the temporal
and spatial variables jointly. As far as we know, no other work has discussed
such an application of energy score. To this end, we introduce three variations
of Energy Score for different use cases of evaluation in the context of trajectory
prediction, which also applies to broader use cases in multivariate time series
evaluation. The energy score is applied to a probabilistic trajectory prediction
with a predictive distribution FX and assessed against a ground truth observa-
tion y as in Eq. 6. The overall performance is then the average performance of
all the agents.

ES(FX , y) =

ED︷ ︸︸ ︷
E

(
∥X − y∥β

p

)
−1

2

EI︷ ︸︸ ︷
E

(
∥X − X̃∥β

p

)
(6)

ES(FXi , yi) =EiES(FXi , yi) (7)

The energy score operates on K uniform samples (trajectories) sampled from
the predictive joint distribution, and the expectations are calculated with respect
to the K samples. Since X ∈ RK×Tpred×S and y ∈ R1×Tpred×S there are many
ways that distance between them can be calculated. ∥.∥p is a Euclidean norm,
and for a rotation-invariant distance calculation, the Lp norm with p = Tpred ×S
should be used. For strictly proper evaluation, β ∈ (0, p) and with a default
value being β = 1. Small values of β should be used for heavy tail data to
ensure corresponding moments exist. Refer to [17] for further information. We
provide three different estimations of the energy score from Eq. 6. For clarity
we provide the estimations for each term separately. The first term is similar
to the displacement error that measures the distance of the prediction with
the observation (ED). The second term is an intra-distance (EI) which can be
thought of as a form of entropy. EI will be zero when the predictions are all the
same or for a deterministic prediction.

Xt,s
k =

xTobs1
k . . . xTobsS

k
...

. . .
...

xT 1
k . . . xT S

k

 yt,s =

yTobs1 . . . yTobsS

...
. . .

...
yT 1 . . . yT S



Entry-wise variation The distance between the matrices will be an entry-wise
matrix norm. With p = 2 it would be equal to Frobenius distance.
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ED(X, y) = 1
K

K∑
k=1

( T∑
t=Tobs

S∑
s=1

|Xt,s
k − yt,s|p

)β/p

(8)

EI(X) = 1
K2

K∑
k=1

K∑
l=1

( T∑
t=Tobs

S∑
s=1

|xt,s
k − x̃t,s

l |p
)β/p

(9)

Column-wise variation In this case, the distance is marginalized over the
spatial dimension, and the emphasis is on the temporal sequence by finding the
distance between temporal sequences. This variation ought to be more sensitive
to temporal discrepancies in X.

ED(X, y) = 1
K

K∑
k=1

(
1
S

S∑
s=1

( T∑
t=Tobs

|xt,s
k − yt,s|p

)β/p
)

(10)

EI(X) = 1
K2

K∑
k=1

K∑
l=1

(
1
S

S∑
s=1

( T∑
t=Tobs

|xt,s
k − x̃t,s

l |p
)β/p

)
(11)

Row-wise variation Similar to the column-wise but it marginalizes over the
temporal dimension and hence only reports on the spatial dependency. It does
not capture cross-interaction between each spatial sequence. For a deterministic
forecast, EI is zero, which makes this estimation identical to the ADE.

ED(X, y) = 1
K

K∑
k=1

(
1

Tpred

T∑
t=Tobs

( S∑
s=1

|xt,s
k − yt,s|p

)β/p
)

(12)

EI(X) = 1
K2

K∑
k=1

K∑
l=1

(
1

Tpred

T∑
t=Tobs

( D∑
s=1

|xt,s
k − x̃t,s

l |p
)β/p

)
(13)

4 Experiments and results

We conduct a series of experiments with a synthetic setup demonstrating Energy
Score’s ability to evaluate trajectory predictions and compare them to the lower-
bound metrics. We consider the following variations of the Energy Score we
introduced earlier:

– Energy Score (ES): entry-wise variation
– Energy Score Temporal (EST): column-wise variation
– Energy Score Spatial (ESS): row-wise variation
– Final Energy Score (FES): ES applied only to the final step of the trajectory.
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In all of the variations, we set the parameters to be p = 2 and β = 1. For
the lower bound metrics, we consider the commonly used variations of top1 and
top10% of FDE and ADE. We also include ADE and FDE that is calculated
over all K of the trajectories. We do not consider CRPS because it would be
equivalent to the average of energy scores obtained by applying energy scores to
each temporal and spatial variable independently, meaning all the information
concerning the spatiotemporal aspects is excluded. In such case, when energy
score is applied to each temporal and spatial variable independently, there is
only one way to estimate Eq. 6.

4.1 Synthetic data

We define a synthetic trajectory-generating process as a bi-variate normal dis-
tribution representing 2D spatial data (S = 2), coupled temporally through an
autoregressive process with coefficients c(t) that controls autocorrelation between
each timestep, a(t) that controls deviation from the mean and b(t) that controls
deviation from the covariance of each step.

y(t) =c(t) · y(t−1) + N (µ(t) + a(t), Σ(t) + b(t)), y0 = (0, 0)

µ(t) =(µ1, µ2) Σ(t) =
(

σ11 σ12

σ21 σ22

)
For our experiments, we generate trajectories with length Tpred = 4 and

consider the second spatial dimensional to be all zeros, and so effectively, the
generating process is one-dimensional and can be summarized as follows:

y(t) =c(t) · y(t−1) + N (µ(t) + a(t), (σ(t) + b(t))2), t ∈ {1, 2, 3}, y0 = 0

a = (a(1), a(2), a(3)), b = (b(1), b(2), b(3)) and c = (c(1), c(2), c(3)) allow cre-
ating different deviations for each step of the generating process from its main
parameter values and hence allows to create so-called synthetic predictions with
different deviations to study robustness and sensitivity of different metrics with
respect to such deviations. We create N different observations {yi}N

i=1 by simu-
lating the above process, where yi = {y(0), . . . , y(3)}. For each ith observation, we
also create K samples of the same process for the trajectory prediction {Xi}N

i=1,
where Xi = {X

(0)
i,k , . . . , X

(3)
i,k }K

k=1, but with different parameters a, b, c to emu-
late the discrepancies in the prediction model. An unbiased prediction has the
same parameter set as the yi. So observations is a N × Tpred × S dimensional
vector, and predictions is a N ×K ×Tpred ×S dimensional vector where for all of
the experiments Tpred = 4 and S = 2. As can be seen from the definition of our
synthetic setup, the second spatial dimension s = 2 is all zeros, and effectively,
the trajectory is one-dimensional, but the evaluations and calculations still op-
erate in a spatial dimensional of two. This was intentional to make our synthetic
setup simpler and the interpretation of the results easier a rationale that if a
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metric does not exhibit desired behavior on lower spatial dimensionality, it is
certain that in higher dimensionality it would not be any more desirable.
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Fig. 1: Example of a synthetically generated observation (ground truth). (a) the
distribution per each time step for the first spatial dimension, (b) 10 trajectories
in 2D where the second spatial dimension of all trajectories are zero and hence
they are plotted with a y-offset for visualization purpose, (c) value of trajectories
along the first spatial dimension.

Figure 1 shows N trajectories that constitute the observation samples y. As
shown in Fig. 1b these trajectories are one-dimensional and they can be deemed
as trajectories that vary in their velocity. In Fig. 2 one observation is shown
against K trajectories that constitute the biased and unbiased predictions. The
biased prediction corresponds to case 4 (small variance) of our sensitivity study
Appendix A plotted together with case 1 (unbiased prediction).
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Fig. 2: Example of a synthetically generated prediction. (a) the distribution of an
unbiased vs. biased prediction per each time step for the first spatial dimension,
(b) One out of N observations depicted against K predicted trajectories.
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4.2 Robustness to the size of trajectories

Similar to the experiment in Appendix F of [2], we demonstrate how each metric
is sensitive to the number of trajectories as shown in Table 1. Assuming that
each trajectory is a uniform sample of the predictive distribution, the more we
sample, the more it occupies the space; hence, a metric that can converge to a
stable score with a minimum number of trajectories is more desired. Authors
in [2] previously showed that topK% scores are more desirable over topK types
since they are more consistent. We show this in our experiment as well and also
show that Energy Score is consistent across different trajectory sizes. The bias
prediction in Table 1 is the prediction with a small variance as in our sensitivity
study in Appendix A. In the next section, we also show why topK% metrics do
not behave ideally, and they still suffer from similar issues as top1.

t = 0 1 2 3
metric pred K

FDE top1 unb 50 0.0 1.1 1.7 2.0
100 0.0 0.6 1.0 1.1
300 0.0 0.2 0.4 0.4

b 50 0.0 1.5 2.4 2.9
100 0.0 1.0 1.5 1.8
300 0.0 0.5 0.6 0.8

FDE top10% unb 50 0.0 23.1 32.6 40.6
100 0.0 23.1 32.6 40.7
300 0.0 23.0 32.3 40.4

b 50 0.0 20.6 28.9 36.3
100 0.0 20.6 28.9 36.3
300 0.0 20.5 28.7 36.1

FES unb 50 0.0 6.0 8.4 10.7
100 0.0 6.0 8.4 10.7
300 0.0 5.9 8.2 10.5

b 50 0.0 6.1 8.5 11.0
100 0.0 6.1 8.6 10.9
300 0.0 6.0 8.4 10.7

t = 0 1 2 3
metric pred K

ADE top1 unb 50 0.0 0.5 2.6 4.9
100 0.0 0.3 2.0 3.9
300 0.0 0.1 1.1 2.7

b 50 0.0 0.8 3.0 5.3
100 0.0 0.5 2.1 4.2
300 0.0 0.3 1.4 3.0

ADE top10% unb 50 0.0 1.4 4.7 7.3
100 0.0 1.4 4.5 7.2
300 0.0 1.3 4.4 7.1

b 50 0.0 1.8 4.9 7.6
100 0.0 1.8 4.8 7.4
300 0.0 1.7 4.7 7.3

ES unb 50 0.0 6.0 10.9 16.1
100 0.0 6.0 10.9 16.0
300 0.0 5.9 10.7 15.7

b 50 0.0 6.1 11.1 16.4
100 0.0 6.1 11.1 16.4
300 0.0 6.0 11.0 16.1

Table 1: The error for each step is calculated based on a moving window over
the trajectories horizon (temporal step). topK metrics are prone to the size of
trajectories (their error decreases with the number of trajectories), while topK%
and Energy Score variations are stable across the size of trajectories. All metrics
report a larger error on the bias prediction b vs. unbiased prediction unb. Also,
they report larger errors on later steps as expected due to the cumulative nature
of the error into the farther future. All the scores obtained from the metrics in
the table were multiplied by 100.
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4.3 Propriety Study

In this study, we empirically aim to demonstrate and examine the properness
(propriety) of the variations of Energy Scores we introduced against different
variations of ADE/FDE. We use the parameters µ(t) = 0 and σ(t) = 0.2 for
t = 1, 2, 3 with N = 1000 and K = 500 to generate ground truth observations
and predictions. We consider two categories of predictions, namely the mean
deviated and variance deviated predictions, by choosing 19 equidistant values
in the range [0.045, 0.045] for a and b respectively for each of the categories.
Errors of the mean deviated and variance deviated predictions could be seen in
respectively in Fig. 3 and 4. We expect a metric to assign its lowest score or
error to the unbiased prediction which is closest to the ground truth. On the
other hand, as the deviations in the parameters of the generating process that
generated the ground truth become larger and hence farther from the truth, we
expect the score to reflect that. In these figures, we depict these two important
anchor points: the score of the unbiased prediction and the lowest score assigned
by the metric via a cross and a dot, respectively. What we observe is all metrics
except for the top1 types seem to be able to distinguish the mean deviated
predictions from the truth and uniquely report the optimal prediction, as we
can see that the dotted and crossed points are nearly identical or very close in
Fig. 3. The reason for them not quite matching all the time could be attributed
to randomness and approximation errors in the metrics. On the other hand,
for the deviations in the variance, it is clear ADE/FDE, and their lower-bound
variations fail altogether, while Energy Score variations still uniquely report the
optimal. This empirical evidence suggests that ADE/FDE and its variations are
not proper, and their usage is limited to certain situations, e.g., detecting mean
bias, while Energy Score, as a strictly proper scoring rule, provides a more robust
evaluation.

As we can see in Fig. (4c, 4f), FDE and ADE are not proper as they assign a
lower error to a prediction that has a lower variance (dots) compared to the unbi-
ased prediction (crosses). Also, the difference between trajectories with different
sizes is not visible on the plots as the displacement errors are averaged over the
size of the trajectories, and the average displacement error (y-axis) has a hugely
different scale than the discrepancy (x-axis). FDE Top1 exhibits a similar behav-
ior as depicted in Fig. 4a while ADE Top1 may not seem to exhibit this behavior
or be less severe as depicted in Fig. 4b, but since it only considers one trajectory
it could be merely due to chance and that more clear as more trajectories are
considered in their Top 10% counterparts as depicted in Fig. 4b, 4e, respectively.
In the meantime, Energy Score variations are consistent and robustly identify
the optimal. Another important observation is that as the number of trajectories
considered for calculation of the scores, Energy Scores are able to identify the
optimal better, while that is not the case for the ADE and FDE metrics, and
actually, quite the opposite happens.

A final observation from our propriety study is that perhaps there is an
optimal value to be chosen for parameter N% that for Top N% metrics minimizes
their undesired non-propriety behavior; however, finding this optimal value does



Trajectory Prediction Evaluation via Energy Score 11

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(a) FDE Top1

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.042

0.044

0.046

0.048

0.050

0.052

0.054

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(b) FDE Top10%

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.380

0.385

0.390

0.395

0.400

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(c) FDE

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.025

0.030

0.035

0.040

0.045

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(d) ADE Top1

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.068

0.069

0.070

0.071

0.072

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(e) ADE Top10%

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.230

0.232

0.234

0.236

0.238

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(f) ADE

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.146

0.148

0.150

0.152

0.154

0.156

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(g) ES

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.124

0.126

0.128

0.130

0.132

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(h) EST

-0.
04

5
-0.

04
-0.

03
5
-0.

03
-0.

02
5
-0.

02
-0.

01
5
-0.

01
-0.

00
5
-0.

0
0.0

050.0
1
0.0

150.0
2
0.0

250.0
3
0.0

350.0
4
0.0

45

Discrepency (symm_mean)

0.114

0.116

0.118

0.120

0.122

Sc
or

e

scores (50 trajectories)
scores (100 trajectories)
scores (300 trajectories)
scores (500 trajectories)
ground truth's score
score's minimum

(i) ESS

Fig. 3: Plot of different metrics across different predictions that deviate on the
mean parameter. The lowest reported score versus the unbiased prediction is
depicted in the circle and cross, respectively.

not guarantee desired behavior on other possible discrepancies and should it
be considered to be found as a hyperparameter for the evaluation to be more
robust, would be deemed more like a hack than a remedy to resolve this problem
and the conclusion is to abandon the usage of these scores as they provide very
limited view for evaluation the least if not misleading.

5 Discussion

Our empirical studies demonstrate desired behavior of the Energy Scores we
proposed for the evaluation of the multimodal trajectory predictions. Our stud-
ies are limited to a simple case of trajectory prediction derived from simple
discrepancies that can materials in one dimension with the rationale that if an
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Fig. 4: Plot of different metrics across different predictions that deviate on the
variance parameter. The lowest reported score versus the unbiased prediction is
depicted in the circle and cross, respectively.

evaluation measure is not exhibiting desired behaviors, i.e., uniquely identifying
the optimal prediction in the simple cases, then it will still be undesirable in a
higher dimension where there are more plausible discrepancies. One of the con-
sequences of our study is that it shows that conventional ADE and FDE metrics,
together with their lower-bound variations, do not faithfully report the quality
of trajectory predictions as promised.

A premise of lower-bound metrics is that they offer a better evaluation of
the multimodal trajectories. While that is true when compared to Top1 and full
ADE/FDE calculation, objectively, that is not true, and they could be misleading
as, by definition, they exclude a good chunk of the trajectories that could be
used for evaluation and effectively missing information on certain parts of the
predictive distribution.
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One of the limitations of Energy Score is the execution time O(n2), which
can be reduced to O(2kn) with k-band variation at the cost of approximation
accuracy introduced in [19]. An implication of employing a distribution-aware
measure is that it uniquely reports on a predictive distribution that information
theoretically is optimal. That makes any downstream task that uses a trajectory
prediction better positioned in decisions related to choosing a trajectory predic-
tion model over the other. Moreover, the energy score can be used as an objective
function during training as long as the function generating the K samples3 is
differentiable. We are aware of two works in the time series forecasting appli-
cations that employ energy score as a loss [3, 9], respectively, for multivariate
probabilistic forecasting of electricity price scenarios and multivariate ensem-
ble post-processing. Their work could be an inspiration for developing methods
for spatiotemporal modeling, such as in the case of multimodal trajectory pre-
diction. Nonetheless, as noted by these works, the multivariate evaluation and
employing a differentiable generator function are present challenges subject to
future research.

6 Conclusion and Future work

We proposed three different variations of the Energy Score for distribution-aware
evaluation of multimodal trajectory predictions. This addresses the gap in the
literature for a thorough, robust, and reliable assessment of multimodal trajec-
tories. Even though our experiments are not exhaustive, they showcase simple
cases under which lower-bound metrics such as minADE and minFDE fail, while
Energy Score offers a better alternative. At the same time, the variations of the
energy score we presented may not be ideal. Still, our preliminary results suggest
it is a better alternative to existing metrics commonly employed in the trajec-
tory prediction literature. A main advantage of ES is that it has a capacity for
different formulations to adapt to the requirements of the task and address as-
pects that could only be seen objectively in the view of a downstream task. In
our work, we rely on the forecasting literature to argue and propose the usage
of Energy Score for trajectory prediction evaluation as its properties, such as
propriety, have been studied and proved to provide superiority over others. To
this end, we list the following potential future directions to adopt ES for the
evaluation of trajectory predictions:

1. Evaluation with real data and a more realistic synthetic setup to better
understand the difference between each variation of the Energy Score.

2. Evaluating state-of-the-art (SOTA) methods, especially those focusing on
uncertainty estimation using Energy Score. It is likely to obtain different
rankings among SOTA, which would underline the importance of energy
score and distribution-aware evaluation.

3. How energy score compares with other metrics such as likelihood-based and
distribution-aware evaluation of trajectory predictions.

3 Also referred to as scenarios in time series literature.
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4. Incorporate other forms of distance (kernel design for energy score) that
would better capture cross-interactions in spatiotemporal dimensions.

5. How Energy Score can facilitate usage and evaluation of trajectory predic-
tions in the downstream tasks.

6. Employing Energy Score as a loss function for training models for multimodal
trajectory prediction.
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Supplementary Material

Appendix A Sensitivity Study

In this study, we will conduct a similar study as the last but with more prediction
discrepancies and show the Energy Score’s power. The data-generating process
that generates observations (ground truths) is the same with µ(t) = 0 and σ(t) =
0.2 for t = 1, 2, 3. To assess the sensitivity of different metrics, we consider the
following prediction models:

1. Unbiased: a = (0, 0, 0), b = (0, 0, 0), c = (1, 1, 1)
2. Symmetric Mean: a = (0.025, 0.025, 0.025), b = (0, 0, 0), c = (1, 1, 1)
3. Asymmetric Mean: a = (0.025, −0.05, 0.05), b = (0, 0, 0), c = (1, 1, 1)
4. Large Variance: a = (0, 0, 0), b = (0.05, 0.05, 0.05), c = (1, 1, 1)
5. Small Variance: a = (0, 0, 0), b = (−0.05, −0.05, −0.05), c = (1, 1, 1)
6. Symmetric Mean bias and Large Variance a = (0.025, 0.025, 0.025), b =

(0.05, 0.05, 0.05), c = (1, 1, 1)

Instead of looking at the scores produced by each of the metrics, we look
at the p-values obtained from a Diebold-Mariano test (DM-test) which reports
whether the scores of a biased prediction are statistically different from the
unbiased prediction or not. To obtain the p-value following steps are taken: 1)
obtain N scores corresponding to unbiased and biased predictions respectively, 2)
calculate the difference between the two and obtain N differences, 3) normalize
the differences according to the DM-test, 4) calculate the two-tailed p-value.

∆i =SCunbiased
i − SCbiased

i

∆̄ = 1
N

N∑
i=1

∆i

z = ∆√
σ(∆̄)

N

→ N (0, 1)

p-value =2(1 − Φ(z)) ∗ 100

Φ is the cumulative distribution function of a Normal distribution and the
p-value ranges from 0% to 100% with lower values indicating that a metric is
better capable of distinguishing between an unbiased and a biased prediction. We
consider p-values under 10% to be statistically significant (equivalent to 5% in
a one-sided test). The parameters for the biased prediction model are manually
found such that at least one of the metrics fall under the 10% threshold and the
rest not to be too close to either of 0% or 100% bounds.

https://ideas.repec.org//p/arx/papers/1910.07325.html
https://ideas.repec.org//p/arx/papers/1910.07325.html
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t = 1 2 3
metric

FDE top1 57.91 94.96 75.07
FDE top10% 5.20 9.38 6.54
ADE top1 57.91 81.05 94.06
ADE top10% 5.20 62.24 3.29

t = 1 2 3
metric

ES 94.07 14.50 2.10
FES 94.07 7.80 0.75
EST 94.07 11.99 1.47
ESS 94.07 20.57 3.41

Table 2: p-values of symmetric mean biased prediction (case 2).

In Table 2 we can see that Top10% metrics are more successful compared to
Top1 metrics in distinguishing the biased prediction from the unbiased predic-
tion for most of the time steps. However, in the ADE Top10%, we can observe
that although the mean bias increases over time, the discrimination is not mono-
tonic as one would expect, whereas, for all of the Energy Score variations, the
discrimination is monotonic. All energy score variations consider the first step
of the biased prediction to be nearly indifferent from the biased prediction but
for later steps gradually they report more difference, and that is desired as the
symmetric mean bias causes an accumulation of bias to the later steps by defini-
tion. Overall, since we are interested in a multivariate scoring that considers all
trajectories and their full length when looking at t = 3 we can conclude that all
energy score variations correctly show strong discrimination for the symmetric
mean bias (case 2) and our proposed energy score variations discriminate better.
It is also, noteworthy that after FES, the EST variation shows strong discrimina-
tion which is expected due to the fact that the FES only looks at the final step.
Also, this shows that EST variation behaves the way we expect, which is to be
sensitive to temporal deviations, and since the mean deviations gradually accu-
mulate the EST also gradually responds. Note that FDE and ADE top1/top10%
yield the same value for t = 1 because by definition they are the same for the
first step. Also the same is true for all energy score variations for t = 1.

t = 1 2 3
metric

FDE top1 57.91 28.53 33.13
FDE top10% 5.20 73.09 48.62
ADE top1 57.91 4.86 42.54
ADE top10% 5.20 67.97 2.75

t = 1 2 3
metric

ES 94.07 94.74 1.28
FES 94.07 92.25 8.14
EST 94.07 91.53 0.47
ESS 94.07 97.45 8.86

Table 3: p-values of asymmetric mean biased prediction (case 3).
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Table 3 shows the results for the asymmetric case (case 3). Since the first step
shares the same mean bias as in case 2 the scores for all metrics are the same.
All metrics behave similarly for all time-steps as in the previous case except
for both FDE top10% and ADE top1 on steps 3 and 4. For ADEs it could be
partly because of the fact that the assymetric mean bias affects the temporal
correlation between the steps and ADE is perhaps responding to that change
but since it only considers 1 trajectory, it could also be a random effect. Since
FDE top10% is not sensitive to temporal correlations, the possibles explanations
coule be some effects of randomness or propagated effects from earlier steps. On
the other hand all the energy score variations behave as expected and similarly
as before. Interestingly the p-values for the second step are comparable with the
first step and that could be explained by the fact that the assymmetric bias
introduced in the first step is counterbalanced (by having a negative bias for
the second step) and that is clearly reflected in the energy scores’ behavior. The
final step performances for energy scores are comparable and again as expected
EST is the best since this task is essentially about the temporal discrimination.

t = 1 2 3
metric

FDE top1 30.65 4.78 3.39
FDE top10% 0.29 2.92 3.09
ADE top1 30.65 8.35 86.80
ADE top10% 0.29 37.74 0.00

t = 1 2 3
metric

ES 19.16 3.32 6.37
FES 19.16 7.28 30.05
EST 19.16 2.61 5.40
ESS 19.16 5.94 8.83

Table 4: p-values of large variance biased prediction (case 4).

Table 4 shows that topK and in particular topK% metrics are more sensitive
on large variance (case 4) while energy score variations are less sensitive. At the
same time, they show less consistency across time-steps compared to energy score
variations, however, since energy score also exhibits some inconsistency across
steps, it is more likely to be of a systematic nature such as the accumulative
effect propagation from earlier steps to the later steps. Larger variance means
that the samples from earlier steps could affect the later steps and visually that
means that the later steps can have more overlaps with the ground truth hence
increasing the chance of the metric to consider the prediction to be close to the
ground truth. The fact that the FES on step 4 has high p-value is aligned with
this line of reasoning. Again, among energy score variations EST performes the
best.
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t = 1 2 3
metric

FDE top1 0.6 0.08 0.36
FDE top10% 0.0 0.00 0.00
ADE top1 0.6 14.96 2.49
ADE top10% 0.0 0.22 6.99

t = 1 2 3
metric

ES 0.15 0.08 0.01
FES 0.15 1.08 0.10
EST 0.15 0.08 0.01
ESS 0.15 0.09 0.01

Table 5: p-values of small variance biased prediction (case 5).

As shown in Table 5 all metrics show comparable discrimination in the small
variance case (case 5), as opposed to case 4. Both categories of lower-bound
and energy score metrics show more sensitivity to lower variance. That is more
accentuated for the energy score metrics. It is hard to explain this behavior
however it seems to be aligned with the results from [19]. But more importantly,
we can see that lower-bound scores tend to exhibit an overreaction to lower
variance by having p-values that are zero. This can be explained by the fact that
they only take a limited number of trajectories into account.

t = 1 2 3
metric

FDE top1 73.42 8.14 41.69
FDE top10% 9.66 10.59 49.67
ADE top1 73.42 35.81 12.35
ADE top10% 9.66 19.24 0.00

t = 1 2 3
metric

ES 37.41 2.79 0.37
FES 37.41 1.87 0.26
EST 37.41 2.02 0.20
ESS 37.41 5.11 0.79

Table 6: p-values of mean biased and large variance (case 6).

Finally, in Table 6 we see the results for the case where we have symmetric
mean and large variance discrepency in the prediction and it summarizes the
power of each metric. Energy score variations come out more successful with the
results being coherent with the previous cases. And again, EST demonstrating
a more powerful discrimination.

In summary, we can see that the energy scores are more consistent in their
discrimination across different steps. For example, whenever the deviations are
expected to accumulate over the time steps, their discrimination responds ac-
cordingly i.e. p-value decreases monotonically, as opposed to the topK% varia-
tions where the decrease is not monotonic which for the topK% metrics it could
be attributed to the fact that at i different modes of the predictive distribu-
tion is evaluated which inevitably leads to such inconsistencies that ultimately
causes difficulty in interpretation of the results especially if one is interested
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(a) symmetric mean
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(b) asymmetric mean
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(c) large variance
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(d) Symmetric mean and large variance

Fig. 5: Visualization of the biased predictions against the unbiased (case 1).
Respectively the biased predictions depicted in red in (a), (b), (c), and (d) cor-
respond to cases 2, 3, 4, and 6 with exaggerated parameters for visualization
purposes. Visualization of Case 5 corresponding to small variance can be found
in earlier figures.

in a temporal assessment. The discrimination power of topK% metrics could
also be affected by the percentage parameter which is not obvious how should
be tuned and probably is a function of the underlying complexity of the data
and some characteristics of the predictive distribution which make them a less
appealing and inconvenient choice for robust evaluation. Moreover, only taking
into account a limited number of trajectories for evaluation can lead to under-
or over-estimation of the true error.
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