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Abstract. In the current era of Internet of Things, typically data from
multiple sources are captured through various sensors yielding Multivari-
ate Time Series (MTS) data. Sensor MTS prediction has several real-life
applications in various domains such as healthcare, manufacturing, and
agriculture. In this paper, we propose a novel Recurrent Neural Network
(RNN) architecture that leverages contextual information and attention
mechanism for sensor MTS prediction. We adopt the notion of primary
and contextual features to distinguish between the features that are in-
dependently useful for learning irrespective of other features, and the
features that are not useful in isolation. The contextual information is
represented through the contextual features and when used with primary
features can potentially improve the performance of the model. The pro-
posed architecture uses the contextual features in two ways. Firstly, to
weight the primary input features depending on the context, and sec-
ondly to weight the hidden states in the alignment model. The latter
is used to compute the dependencies between hidden states (represen-
tations) to derive the attention vector. Further, integration of the con-
text and attention allows visualising temporally and spatially the rele-
vant parts of the input sequence which are influencing the prediction. To
evaluate the proposed architecture, we used two benchmark datasets as
they provide contextual information. The first is NASA Turbofan Engine
Degradation Simulation dataset for estimating Remaining Useful Life,
and the second is appliances energy prediction dataset. We compared
the proposed approach with the state-of-the-art methods and observed
improved prediction results, particularly with respect to the first dataset.
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1 Introduction

The Internet of Things (IoT), driven by advanced sensors, computing and com-
munication technologies, has enabled capturing data from various sources and
utilise them to realise various ’smart’ environments such as smart homes, smart
cities, smart factories. The data captured through various sensors can be con-
sidered as Multivariate Time Series (MTS) [25]. Sensor MTS can be used for
learning predictive models, thereby innovating various applications for such en-
vironments. These data rich environments often provide contextual information
that can be leveraged while learning the predictive models to improve the per-
formance [26]. For example, an automated fault detection and diagnosis agent
for a HVAC system in a smart building can utilise the environmental factors
such as indoor and outdoor temperature and humidity (contextual information)
along with the current and voltage data from the HVAC system [11]. However,
most of the machine learning algorithms do not explicitly take into account the
available contextual information [13].

We adopt the definitions of primary and contextual features to distinguish
between the features that are independently useful for learning irrespective of
other features, and the features that are not useful in isolation [26]. The con-
textual data available in terms of contextual features may influence the perfor-
mance by improving the model but may not be involved directly in learning.
We also emphasize that the contextual data is available from the environment
where primary data is captured and is a MTS itself. Over the past decade, Re-
current Neural Networks (RNNs) including Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU) have been widely used for sequential or time
series data modeling. They are well known for capturing temporal contexts im-
plicitly due to their internal memory. It is worth mentioning here that in this
paper, the focus is not on the temporal context or the contexts that are gen-
erated within the network from input and/or output signals. Here, the focus is
on explicit contexts, which is in the form of additional data available from the
problem domains. The current RNN architectures do not explicitly exploit the
contextual data. Recently, in [8, 9], a context integrated RNN (CiRNN) which
uses GRU as basic unit is proposed. CiRNN, takes both primary and contex-
tual features as input. The contextual features are used to weight the primary
features depending on the context such that the input to hidden layer weights
are function of contextual features. With CiRNN, a significant improvement in
performance is observed when compared to stat-of-the art methods for the task
of remaining useful life prediction in machine prognostics.

On the other hand, recently, attention mechanism has received a great deal of
attention mainly due to the work of Bahdanau et al. [1] in the area of neural ma-
chine translation (NMT). Typically, NMT models are based on encoder-decoder
approach where the encoder is for the source language and the decoder is for
the target language. For the source language encoder, usually RNNs are used
where the necessary information of the source sentence is compressed in to a
fixed length vector. For longer sentences, this conventional approach, gives poor
performance. Attention mechanism allows to capture the information from all
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or few source positions in the encoder thereby alleviating the problem with con-
ventional encoder-decoder approach.

In this paper, we propose a novel RNN architecture that exploits context
and attention for sensor MTS prediction. The architecture primarily consists of
CiRNN with attention layer and finally a fully connected (FCN) layer. In addi-
tion to CiRNN, attention layer uses the contextual features to weight the hidden
sates of the alignment model [17]. The alignment model is used to compute the
dependencies among the hidden states or representations to derive the attention
vector. Further, adding contextual attention to CiRNN, provides interpretations
at two levels. First, the input features weighted by the context indicates which of
the features are relevant in a given context for prediction. Second, the attention
weights show which parts of the time series, apart from the last time step, the
network is attending to prior to the prediction.

To demonstrate the effectiveness of the proposed approach, it is applied to
two benchmark datasets. The first task is in the domain of engine health prognos-
tics where we considered the widely used NASA Turbofan Engine Degradation
Simulation dataset (C-MAPSS dataset) for estimating RUL [20]. The dataset
contains information from 21 sensors and 3 operational settings. The opera-
tional settings have a substantial effect on engine performance and represent
the contextual information required for the proposed model. The second task
is to predict household appliance energy usage where Appliances energy predic-
tion (AEP) dataset from UCI repository is used [2]. The results of the proposed
model is compared with baseline models and also state-of-the art methods. The
results show an improvement in performance in prediction results.

The rest of the paper is organised as follows. In the next section, we briefly
present the related work. In section 3, we discuss the architecture and learning
in the proposed architecture . Section 4, first describes the datasets and then
discusses the experiments and results . Finally, section 5 concludes the paper.

2 Related work

Considering the increase in amount and dimensionality of time series data, par-
ticularly data from ubiquitous sensors, deep learning methods have been applied
to a great extent to extract features and to recognize complex latent patterns
[10]. In this paper, we limit the scope of related work to prediction models that
use RNNs and attention mechanism for MTS prediction. The work related to
context integration to RNN is largely done in the area of natural language pro-
cessing (NLP) domain and it has been discussed in [8, 9].

In [5], three extensions of content attention [1] are provided that use the
relative positions in input and output to capture the pseudo-periods in time
series. Several experiments with MTS data showed that for multi-horizon fore-
casting the proposed approach is significantly better than RNN with attention
and baseline methods based on ARIMA and Random Forests (RF). In [19],
a dual-stage attention-based recurrent neural network (DA-RNN) is proposed
which consists of an encoder with an input attention mechanism and a decoder
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with a temporal attention mechanism. It is tested for predicting indoor tem-
perature and for predicting the index value of the NASDAQ 100 using stock
dataset. A temporal pattern attention mechanism for multivariate time series is
presented in [22]. The focus is on extracting relevant input features rather than
time steps through attention. CNN filters are applied to the row vectors of RNN
(encoder) hidden units before deriving the attention vector. They tested the
approach with six MTS datasets that include various domains such as energy,
music, traffic, and finance, and achieved good results. In [7], temporal attention-
based encoder–decoder model is proposed for MTS multi-step forecasting tasks.
It uses a Bidirectional-LSTM (Bi-LSTM) with attention mechanism to encode
the hidden representations of MTS data as the temporal context vector. Another
LSTM is used to decode the hidden representation for prediction. Experiments
on five MTS datasets showed that the proposed model is effective in multi-step
forecasting. Cheng et al. [3] proposed a model that uses dual stage attention
with Bi-LSTM as encoder and LSTM decoder. The experimental results with
MTS data related to energy and finance showed better performance for single
step and multi-step prediction. However, for longer time steps, the prediction
performance of the model reduces.

To summarise, the existing approaches discussed here leverage attention
mechanism to deal with longer time sequences which LSTM or GRU alone is
not able to handle. Also, the attention mechanism is tailored for MTS data
such that relevant input features is taken into consideration while computing
the attention vector. None of the previous studies, to the best of our knowledge,
investigated the possibility of utilizing contextual information to weight the hid-
den states as well as the input features through CiRNN to realise a context
sensitive attention based model for improving sensor MTS prediction.

3 Proposed Approach

In this section, we first present the overall framework and finally the details of
each of the units is provided3.

3.1 Proposed Framework

Fig. 1 shows the proposed context sensitive attention-based RNN model for the
prediction of sensor MTS. It consists of Context Integrated Gated Recurrent
Units (CiGRU) [8] which have recurrent connections and takes the primary and
contextual input. The learned sequential features (hidden states of CiGRU) are
provided as input to the attention layer. The output of the attention layer is
an attention vector (at) which is computed using the temporal context vector
(TCV). Note that, conventionally the TCV is referred to as context vector. Here,
to make a distinction between temporal context and explicit context we are
using the term TCV. The TCV (ct) is computed using the attention weights

3 The code is available at https://github.com/rduttabaruah/CiRNN
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Fig. 1: Proposed framework with CiGRU and attention.

computed in the attention layer. The target hidden state (ht) is concatenated
with the TCV through a concatenation layer to produce the attention vector.
Finally, the attention vector is passed as input to fully connected layers (FCLs)
in the network to predict the target at time step (t+ 1).

3.2 Context Integrated Gated Recurrent Unit

The RNN is composed of CiGRU units [8, 9], which are fundamentally GRUs [4]
with an additional context input. In CiGRU, the input to hidden unit connection
weights are dependent on the context variables. Fig. 2 shows the architecture of
a single CiGRU. The output (ŷt ∈ ℜny×1) at time step t in CiGRU is computed
in similar manner as in GRU. However, the candidate hidden state (h̃t ∈ ℜnh×1),
update gate (st ∈ ℜnh×1), and reset gate (rt ∈ ℜnh×1) values are determined
based on context zt as shown below:

ŷt = f(Vht + by)

ht = st ⊙ ht−1 + (1− st)⊙ h̃t

h̃t = tanh(Wh(zt)xt +Uh(rt ⊙ ht−1))

st = σ(Ws(zt)xt +Usht−1)

rt = σ(Wr(zt)xt +Urht−1)

(1)

where nx, ny, nz, nh are the input, output, context, and hidden unit dimensions,
ht ∈ ℜnh×1 is the hidden unit activation at time step t, U ∈ ℜnh×nh , V ∈
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Fig. 2: A Context Integrated Gated Recurrent Unit.

ℜny×nh , W ∈ ℜnh×nx are the parameter (weight) matrices, and by ∈ ℜny×1 is
the bias vector.

In equation 1, the weights associated with the input (xt) are dependent on
the vector of contextual variables (zt). Let us consider one of the parameters,
Wh(zt). The parameters Ws(zt) and Wr(zt) can be expressed in a similar way.
The matrix Wh(zt) is of dimension nh × nx and each of the components can be
given as:

Wh(zt) =


wh

11(zt) wh
12(zt) · · · wh

1nx
(zt)

wh
21(zt) wh

22(zt) · · · wh
2nx

(zt)
...

... · · ·
...

wh
nh1

(zt) w
h
nh2

(zt) · · · wh
nhnx

(zt)

 (2)

where each element of the matrix can be expressed as:

wh
ki(zt) = Bh

kiG(zt), k = 1, .., nh, i = 1, .., nx

Bh
ki = [bhki1, b

h
ki2, · · · , bhkim]

(3)

where G(zt) = [g1(zt), g2(zt), ..., gm(zt)]
T is a vector of basis functions that can

be chosen at the time of design. Bh
ki is a vector of coefficients that specify the

dependence of weights on context variables. We can define a matrix Bh where
each row Bh

k can be formed by concatenating coefficient vectors Bh
ki as shown

below. Therefore, Bh is of dimension (nh × nxm).

Bh
k = [Bh

k1,B
h
k2, · · · ,Bh

knx
], k = 1, 2, ..., nh (4)

Using Bh and similarly Bs and Br, the candidate hidden state h̃t, the update
gate st, and reset gate rt in equation (1) can be expressed as:
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h̃t = tanh[Bh(xt ⊗G(zt)) +Uh(rt ⊙ ht−1)]

st = σ[Bs(xt ⊗G(zt)) +Usht−1]

rt = σ[Br(xt ⊗G(zt)) +Urht−1]

(5)

where the symbol ⊗ represents Kronecker product.
Learning of the vector of coefficients Bh

ki with m elements is similar to
RNN. For RUL estimation, L2 loss function and back propagation through time
(BPTT) is used. Finally, the parameters can be optimized using any suitable
optimization algorithm such as stochastic gradient descent (SGD), Adam or
RMSProp. The details are available in [9].

3.3 Attention Mechanism

The attention used here is global attention [17], at each time step t, the hid-
den states of CiGRU is used to compute the TCV (ct) which captures relevant
information about the next target yt. The vector ct is defined as:

ct =

t∑
i=1

αtihi (6)

where αti is the attention weight. So, the context vector considers all the hidden
states of the CiGRU weighted by attention weights. The attention weight is given
as:

αti =
exp(f(ht,hi))∑t
i=1 exp(f(ht,hi))

(7)

The function f is given by, f(ht,hi) = hT
t W

a(zt)hi. Here, the weight matrix
Wa ∈ ℜnh×nh depends on the context Z. As discussed in section 3.2, f can
further be expressed as,

f(ht,hi) = hT
t [B

a(hi ⊗G(zt))] (8)
where Ba is of dimension (nh × nhm).

Finally, the TCV and the hidden state ht is combined in the concatenation
layer through a fully connected layer to get the attention vector as given by the
following equation.

at = tanh(Wc[ct,ht]) (9)

4 Experiments and Results

In this section, we first describe the datasets, and then discuss the experiments
and the results achieved with the proposed model. The results from the proposed
model are compared with baseline models and also with the state-of-the-art
methods.
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4.1 Dataset description

For evaluation of the proposed model, we considered two benchmark datasets
where contextual information is available. The first dataset is the widely used,
NASA Turbofan Engine Degradation Simulation Data Set (TEDS) [20]. The
dataset is generated using Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) tool. The dataset consists of four distinct datasets that
contain information from 21 sensors (such as Total temperature at fan inlet,
Total temperature at Low Pressure Compressor outlet), 3 operational settings
(flight altitude, Mach number, and throttle resolver angle). In addition to these,
engine identification number, and cycles of each engine is also available. We
considered the dataset (FD002) which has six operating conditions. Due to the
presence of different working conditions, it is suitable for the proposed model.
The operating working conditions can be treated as contextual features while
training the model. The dataset provides separate training and test sets. In the
training set, the sensor data is captured until the system fails. Whereas in the
test set it is captured up to a certain time prior to the failure. The test sets also
provide true Remaining Useful Life (RUL) values. The FD002 dataset has 260
and 259 number of engines, 53759 and 33991 data samples in train and test set,
respectively, and has one fault mode.

The second dataset is Appliance Energy Prediction (AEP) dataset [2]. The
dataset comprises of measurements of house temperature and humidity with a
10 minute interval for a period of 4.5 months. The indoor data was merged
with weather data from the nearest airport weather station (Chievres Airport,
Belgium) using date and time column. The weather data was retrieved from
a public data set from Reliable Prognosis (rp5.ru). Two random variables are
also included in the data set for testing the regression models and to filter out
non-predictive attributes (parameters). It consists of 19735 data samples and 29
features including the random variables. The dataset has features like, energy
use of light fixtures in the house, Temperature in kitchen area (T1), Humidity
in kitchen area (RH_1), Appliances energy usage, and weather data such as
outside temperature, humidity, pressure, wind speed etc.

4.2 Data Preprocessing

For TEDS dataset, the data from the 21 sensors are analysed. First, univari-
ate and bivariate analyses are performed and the trend of sensor data is also
analyzed. We selected 6 sensors (s1, s2, s8, s13, s14, s19) considering scatter plot
observations and correlation analysis [8]. As the training data does not have the
true RUL values, piece-wise degradation model [15, 6] is used to get the values.
With this degradation model, initially for a specific period, the RUL values re-
main constant and after that as the number of time cycles progress, the RUL
values reduces linearly [12]. For our experiments, 125 is selected as the initial
constant RUL based on existing works that have used C-MAPSS dataset. The
data is normalized using min-max normalization and then it is clustered into
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6 clusters based on operational regimes and then normalized again using clus-
ter mean and range. Finally, the data is smoothed using moving average with
window size of 3 while excluding the target. The target variable is RUL.

For AEP dataset, first the two random variables are removed and then the
data is normalized using min-max normalization. The outside temperature, pres-
sure, humidity, wind speed and hour of the day is considered as context variable
and the remaining indoor variables are used as primary features. The target
variable is Appliances energy usage.

4.3 Performance Metrics

The performance of the proposed model is measured using three metrics, RMSE
(Root Mean Squared Error), MAE (Mean Absolute Error), and score from a
asymmetric scoring function.

The scoring function is specific to the problem of RUL estimation and was
proposed by by Saxena et al. [20]. The score metric given in equation (10) is for-
mulated in such a way that late predictions (positive errors) draw more penalty
compared to early predictions (negative errors). In either case, the penalty in-
creases exponentially with error.

score =

{∑n
i=1 e

− di
a1 − 1, if di < 0∑n

i=1 e
di
a2 − 1, if di ≥ 0

(10)

where a1 = 10, a2 = 13, and di = ˆRULi − RULi is the difference between
predicted RUL and actual RUL values, n is the number of samples in the test
data .

4.4 Training and Validation

To train the models, a validation set is created from the available training dataset
of TEDS. From each engine unit the last l samples, where l is multiple of se-
quence length, are kept for validation. Thus, the validation set consists of samples
from each engine unit as in the test set. For the experiments, l is set to 2. The
AEP dataset is split into 80% training and 20% testing and for another set of
experiments it is divided as 75% training and 25% testing. From the training
set, 10% data is used as validation set. This ratio is selected to compare the
results with existing works. The following hyperparameters are used for tuning
the model, number of hidden units (RNN): 15-30, step 5, number of hidden
units (FCL): 5-30, step 5, sequence (window) length: {10, 15, 20}, learning rate:
loguniform(1e− 5, 1e− 3), oprimizer: SGD, Adam, RMSProp. The number of
CiGRU layers is fixed to 1 and the batch size is set to 128. For the contextual
inputs, polynomial basis functions of degree 2 are used. The proposed model is
implemented using Python 3.10 with PyTorch 1.12 library in a Dell Precision
3650 workstation with Ubuntu 20.04 OS. The hyperparameters are optimized
using Optuna with Tree-Structured Parzen Estimater sampler (TPESampler)
and Median Pruner.
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Table 1: Model configurations and Hyperparameters
Dataset Model Hyperparameter Optimizer

GRU [9] 15, 10, 64, 9× 10−3 RMSProp
TEDS CiGRU [9] 20, 15, 64, 5× 10−3 RMSProp
(FD002) CiGRU + A 30, 5, 15, 128, 3× 10−3 Adam

CiGRU + CxA (Proposed) 20, 20, 10, 128, 6× 10−3 RMSProp

AEP

GRU 15, 15, 128, 2× 10−3 RMSProp
CiGRU 10, 15, 128, 5× 10−5 RMSProp
CiGRU + A 25, 10, 20, 128, 2× 10−3 Adam
CiGRU + CxA (Proposed) 15, 15, 20, 128, 1× 10−3 Adam

We considered two models as baseline to compare with the proposed model,
for which we use the acronym as CiGRU + CxA (CiGRU with contextual atten-
tion). The first baseline model is RNN with GRUs, and the second is RNN with
CiGRU and attention (CiGRU + A). All the models are trained with primary
as well as contextual features, however, in the first model (GRU) contextual
features are concatenated with primary features. The latter way of using con-
textual features with primary features is also referred to as contextual expan-
sion [26]. The models and the best hyperparameter values achieved after tuning
the models using TEDS (FD002) dataset and AEP dataset is presented in Ta-
ble 1. The hyperparameters shown in the Table 1 are: number of hidden units
(GRU/CiGRU), number of hidden units in fully connected layer of CiGRU with
attention, sequence length, batch-size, and learning rate.

4.5 Results

Table 2 presents the results obtained from CiGRU + CxA and the baseline mod-
els with the test dataset of TEDS and AEP. For TEDS, the testing is performed
for each engine unit separately and the average RMSE and average score is re-
ported. It is apparent from Table 2 that CiGRU, CiGRU + A, and CiGRU +
CxA performed similar in terms of RMSE with CiGRU + CxA model’s RMSE
marginally better. On the other hand, the scores of CiGRU + A and CiGRU +
CxA are comparable and significantly better than CiGRU. So, CiGRU + CxA
is able to lower the number of late predictions. Fig. 3 shows the predicted RUL
values versus actual RUL values for a selected engine from the test data. It can
be observed from the figure that for the constant part, the error is negative which
is contributing towards low score. Similar trend is observed in other engines as
well.

For AEP dataset, CiGRU + CxA performance is better than all other models
in terms of MAE. Considering RMSE metric, CiGRU + CxA performed slightly
better than CiGRU + A but significantly better than other models. Fig. 4 shows
the predicted and actual Appliance energy usage for first 300 samples in the test
data which is almost 2 days of data. It can be observed from the figure that
the model can predict appliance energy but underestimates the peaks. One of
the reasons could be that for certain days of the week the energy consumption
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Table 2: Comparison of proposed model with baseline models
Dataset TEDS-FD002 AEP
Model RMSE Score RMSE MAE
GRU [9] 25.83 4122.89 75.81 38.42
CiGRU [9] 11.97 363.03 76.40 40.30
CiGRU + A 12.57 299.75 60.11 30.58
CiGRU + CxA (Proposed) 11.80 306.23 59.11 26.55

Fig. 3: Actual and Predicted RUL values.

is higher compared to the other days which is not captured by the model. In-
corporating additional features such as day of the week and holidays potentially
can improve the model. It is to be noted here, CiGRU + CxA is CiGRU + A
and context in attention, CiGRU + A is CiGRU with attention, and CiGRU is
GRU with context as separate input. The results show that adding context and
attention to the baseline GRU provides a significant improvement in terms of
given performance metrics.

A comparison of results achieved from CiGRU + CxA and results from state-
of-the art deep learning models applied to TEDS dataset is presented in Table
3. The models that are selected for comparison are sequential models based on
LSTM, sequential models with attention, and additionally CNN-based models
are considered. The best values from the existing approaches and the values
from the proposed model is highlighted in bold. It is evident from the table that
CiGRU + CxA performed better compared to all other models both in terms of
RMSE and score. The percentage decrease is 25.41% and 69.62% in RMSE and
score, respectively.

Table 4 shows the comparison of CiGRU + CxA with existing approaches
for AEP dataset. It is to be noted that there are several other approaches [30]
that used the AEP dataset, however, only three approaches are compared here.
The reason is that there is inconsistency in selection of test data in the existing
approaches. The original paper [2] that published the dataset used 25% of the
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Fig. 4: Actual and Predicted values of Appliance energy usage.

Table 3: Comparison of proposed model with state-of-the-art -TEDS
Model RMSE Score
LSTM + FNN [32] 24.49 4,450.00
CNN + FNN [14] 22.36 10,412.00
RBM + LSTM [15] 22.73 3,366.00
LSTM + Attention [6] 17.65 2,102.00
MS-DCNN [23] 19.35 3,747.00
DA-CNN [24] 16.95 1,842.38
Attention Bi LSTM [21] 16.59 1,223.00
DA architecture [16] 17.08 1,575.00
Transformer Encoder + Attention [28] 15.82 1,008.08
CiGRU + CxA (this paper) 11.80 306.23

data as test set and showed that Gradient Boosting Machines (GBM) achieved
the best results. Similarly, [31] used a 25% data as test set with XGBoost. Finally,
[18] considered 20% data for testing with Adaptive Input Selection RNN (AIS-
RNN). As shown in the Table 4, we tested CiGRU + CxA with two test sets
one is 25% of available data and the other is 20% of the data for comparison.
It is apparent from the results that CiGRU + CxA performed better or at par
with existing approaches in terms of RMSE. However, the MEA is comparatively
little higher than other models.

The experimental results show that RNN model with CiGRU and contextual
attention performed significantly better than other models in presence of context,
particularly in case of TEDS dataset where multiple operating conditions are
explicitly present. Also, in comparison to other models, the proposed model
achieved the given performance with relatively simpler model with 1 layer, 20
hidden units in RNN and 20 in FCL for TEDS and 1 layer 15 hidden units in
RNN and 15 in FCL for AEP dataset. For TEDS dataset, the results are also
influenced by selected features and normalization based on clustering. It is also
worth mentioning here that each of the existing approaches had considered the
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Table 4: Comparison of proposed model with state-of-the-art-AEP
Model RMSE MAE
GBM [2] 66.21 35.24
XGBoost[31] 59.69 26.67
CiGRU + CxA (this paper) 58.82 29.33
AIS-RNN [18] 59.81 23.42
CiGRU + CxA (this paper) 59.11 26.55

operating conditions (contextual features) in a different way. For example, Zheng
et al. [32], in their approach, clustered the operating conditions and use one-hot
encoding for their representation and then it is included as a primary feature.
On the other hand, for AEP dataset, the existing approaches consider both the
weather and indoor conditions as primary inputs.

Next, we analyse the attention weights and contextual weights. For RUL
prediction model, Fig. 5 shows the attention weights for the same engine unit
as in Fig. 3. It can be seen that prediction at time steps 25 to 190 mainly relied
on early as well as recent time windows (5-15) whereas during the last time
steps the network focuses at the last time window. In Fig. 6 the contextual
weights (Bs) associated with only one primary feature (demanded corrected fan
speed) is shown which has mostly positive values. Similarly, two other features,
for which heatmaps are not shown here, associated with fan speed have higher
weights compared to other primary features. This indicates that the fan speed
has more impact in prediction of RUL compared to other features. We performed
similar analysis with AEP dataset. However, we are not providing the heatmaps
for the weights due to space constraint. We observed that the heatmaps for the
primary features are not significantly different except two heatmaps, temperature
in the kitchen area and temperature in laundry room. In comparison to these
two features, other features have more positive weights. Thus, the attention and
contextual weights allow understanding the impact of features and time steps
on the predicted output. However, as the size of this weight matrices grow the
interpretation becomes challenging.

5 Conclusion and Future work

In this paper, we proposed a novel RNN architecture which has CiGRU as basic
units and additionally incorporates the contextual attention mechanism. CiGRU
allows integrating explicit contexts available from the problem domain and at-
tention mechanism helps in retaining information from long sequences. Further,
attention weights are learnt in a way that they are influenced by the context.
The contextual weights in CiGRU and attention weights can be utilized for in-
terpreting the model by visualising which feature and time steps are affecting
the predictions. The experimental results with two benchmark datasets showed
that the architecture achieves better performance or at par with the existing
approaches. In future, we intend to perform more experiments and analysis with
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Fig. 5: Attention weights at each time step.

Fig. 6: Contextual input-hidden weights (part of matrix Bs associated with one
input, demanded corrected fan speed, with dimension nh ×m )

other benchmark datasets, and also apply it to the applications for smart envi-
ronments where context data can be acquired. Recently, the success of transform-
ers [27] in NLP and computer vision has attracted researchers and practitioners
from time series community and there is a surge in transformer-based solutions
for time series forecasting [29]. Investigating the pertinence of transformers to
sensor MTS prediction and also the relevance of external contextual information
for such models will further be considered in future.
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