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Abstract. Detecting change points in time series data is a widely ac-
knowledged challenge with diverse applications, in which the data ob-
tained from measured values is often characterized by complex compo-
sitions, and the availability of real data is typically limited. However,
current detection algorithms often depend on domain-specific data to
achieve better performance or are restricted to analyzing single variant
series, limiting their applicability. In this paper, we introduce a novel
approach to change point detection that eliminates the requirement for
collecting supervised data. Initially, we train a discriminant model using
artificially generated synthetic signals comprising a combination of intri-
cate patterns and random noise. This discriminant model is designed to
predict the number of change points, and the synthetic data set encom-
passes a wide range of patterns observed in real data and offers significant
advantages in terms of diversity and data volume. The trained discrim-
inant model is then applied in conjunction with the ClaSP method for
change point detection. To fully exploit multivariate series information,
we propose a simple yet useful weighted-merging method that improves
detection performance by aggregating change point votes within each
time gap. Experimental results demonstrate the superiority of our De-
tection Model via Synthetic Signals (DMSS) compared to the original
ClaSP method, demonstrating exceptional performance on the Human
Activity Segmentation dataset.

Keywords: Change Point Detection · Synthetic Signals · Multivariate
Series.

1 Introduction

The exploration of time series data plays a crucial role in comprehending and
predicting the intricate dynamics of real-world systems. However, the temporal
nature of such data also introduces the possibility of abrupt changes or shifts
in behavior, known as change points. Detecting change points in time-series
data is a multifaceted and challenging problem [1]. Unlike traditional anomaly
detection, which focuses on identifying outliers or deviations from a predefined
norm, change-point detection aims to identify specific moments in time when the
statistical properties of the data undergo a fundamental shift. These shifts can
manifest as sudden spikes, dips, or changes in trend, indicating a transformation
in the underlying data-generating process.
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Over the following decades, numerous change point detection methods have
been developed [2–8]. These methods are based on diverse concepts and have
the ability to recognize various types of changes in time series, such as jumps
in mean and variance, correlations among different components, and more com-
plex dependencies. Comprehensive overviews describing these algorithms can be
found in various literature sources [1, 9, 10]. To indicate the reliability of the pre-
dicted change points, change point detection methods apply various techniques
to extract relevant characteristics from each segment, such as Arc Curve [4],
CUSUM statistic [3], Gaussian statistics [6], and information gain [5]. ClaSP [8]
trains a binary classifier for each possible split point and utilize the accuracy
to generate characteristics. These characteristics capture the properties of the
segment that are indicative of different semantic classes.

However, most of the existing change point detection methods implicitly as-
sume that all data is segmentable and the specific number of segments is usually
automatically identified by heuristic algorithms, making it difficult to obtain re-
liable predictions. On the other hand, when there are multiple variables in a time
series instead of single time series, there is lack of efficient methods to combine
multiple predictions. To alleviate these two issues, we propose a novel approach
called DMSS (Discriminant Model via Synthetic Signals) for detecting change
points in time series. Based on the observation that real signals often consist of
a certain range of recognizable patterns, our method incorporates a discriminant
model trained on synthetic signals and utilizes a simple merging technique, in
which the synthetic data set encompasses a wide range of patterns observed in
real data and offers significant advantages in terms of diversity and data vol-
ume. We introduce a model-based method to estimate the number of change
points in a series more accurately, which greatly aids subsequent segmentation
tasks. We present a straightforward yet effective merging method that leverages
the information from multivariate time series. Experimental results demonstrate
that the proposed DMSS method outperforms the original ClaSP method on
the Human Activity Segmentation data set and finally ranked the third place in
HAS challenge[11].

In this paper, we will begin by describing the quality metrics and the method-
ology we will use to develop our algorithms. We will also present the results of
our experiments and evaluate the effectiveness of our approach. Our code is
available at: https://github.com/Tingji2419/MSS.

2 Related Works

Change Points Detection (CPD) has been extensively studied over the last sev-
eral decades in the fields of data mining, statistics, and computer science, as it
addresses a wide range of real-world problems. There are three main groups of
approaches for time series segmentation: dynamic programming, heuristic, and
probabilistic [12].

Dynamic programming is utilized as an optimization method in conjunction
with a cost function [13–15]. The fundamental technique for dynamic program-
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Fig. 1. The process of Detection Model via Synthetic Signals (DMSS). We first generate
synthetic signals with complex patterns. The synthetic data gets multiple discrimina-
tion problems after being split by sliding windows. We train a discriminant model
based on synthetic data set, which will be used to predict the number of segments of
each time series in advance. After combining the discriminant model with ClaSP, we
re-weight the segmentation results of each individual variable and get the final merged
result, making full use of the semantic information of multiple variables.

ming segmentation is called k-segmentation, which focuses on minimizing the
variance within the segments. Heuristic approaches can be categorized into three
groups: sliding window, TopDown, and BottomUp. Sliding window approaches
involve sliding a window over the time series and initiating a new segment when
a specified error criterion is met [16]. TopDown approaches start with a sin-
gle segment and recursively partition the time series until a specific error cri-
terion is satisfied at each step [2, 17, 3, 18]. IGTS [5] proposes both TopDown
and dynamic programming as optimization methods. On the other hand, Bot-
tomUp approaches begin with the maximum number of segments and merge
them iteratively until a predefined error criterion is fulfilled. Probabilistic-based
segmentation algorithms take into account the data distribution and transition
times, employing methods such as Bayesian distribution [19], Hidden Markov
Models [20], Gumbel distribution [7], and multivariate Gaussian distribution [6].

Apart from the aforementioned primary categories, other methods have been
proposed. For example, FLUSS [4] leverages the assumption that a high proba-
bility of semantic change exists when only a few arcs intersect at a given index
point. ClaSP [8] takes a unique approach by enriching a time series with a cus-
tomized classification score profile using the self-supervision concepts [8].

However, many check point detection challenges, such as human activity seg-
mentation, involve time series composed of heterogeneous data from different
types of sensors. Most existing temporal segmentation methods are designed
for single time series analysis. In contrast, our method extends the capabilities
of ClaSP by enabling the analysis of multi-series data through a simple yet effi-
cient merge strategy. This extension allows for more comprehensive and accurate
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segmentation results, taking into account the diverse information from multiple
sensor streams.

Furthermore, traditional approaches for estimating the number of segments
typically rely on comparing evaluation metrics on real data [21, 22, 5]. However,
our observation is that real signals often exhibit a certain range of recognizable
patterns. To address this, we generate synthetic signals that simulate real data,
encompassing a wide range of patterns observed in real data sets. This synthetic
data set offers significant advantages in terms of diversity and data volume.

Notably, to the best of our knowledge, there is currently no existing method
for estimating the number of segments through an artificial dataset. In this
regard, our proposed method stands out. By constructing a diverse synthetic
dataset and training a dedicated discriminant model, we can predict the number
of segments more accurately and robustly. This capability not only provides
valuable insights into segment estimation but also assists subsequent methods
in achieving improved performance.

In summary, while existing methods such as FLUSS and ClaSP have made
notable contributions, our method expands the scope of ClaSP to analyze multi-
series data and introduces a novel approach for estimating the number of seg-
ments using synthetic data. These advancements enhance the accuracy, flexibil-
ity, and applicability of segment analysis techniques, paving the way for further
improvements in various domains.

3 Background

3.1 Change-Point Detection

Consider a multivariate time series T = {t1, t2, ..., tl} consisting of l observations,
where each observation for a moment t is represented by a d-dimensional value
ti ∈ Rd. The time series changes its behaviour at multiple moments c1, c2, . . . , cN .

t1, t2, ..., tc1−1

Segment g1

, tc1 , ..., tc2−1

Segment g2

, tc2 , ..., tcN , ..., tl
Segment gN

The change-point detection algorithm recognizes m change-points at moments
ĉ1, ĉ2, . . . , ĉM . Let G = {g1, g2, . . . , gN} represent the set of ground truth seg-
ments split by c1, c2, . . . , cN , and P = {p1, p2, . . . , pM} denote the set of pre-
dicted segments split by ĉ1, ĉ2, . . . , ĉM .

3.2 Quality Metrics

To evaluate the change-point detection algorithm, we computes the F1-score by
comparing the predicted and ground truth segments.

We first computes the intersection over union (IoU) between two segments.
Given a predicted segment pi and a ground truth segment gj , when the inter-
section between pi and gj is ∅, the IoU is 0, otherwise it is calculated as:

IoU(pi, gj) =
min(end(pi), end(gj))−max(start(pi), start(gj))

max(end(pi), end(gj))−min(start(pi), start(gj))
,
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where start(pi) and end(pi) represent the starting and ending moments of the
predicted segment pi, respectively. Similarly, start(gj) and end(gj) represent the
starting and ending moments of the ground truth segment gj .

All IoU values populate a confusion matrix for each pair of predicted and
ground truth segments. The confusion matrix is a N × M matrix, where N
is the number of predicted segments and M is the number of ground truth
segments. Each element of the matrix represents the IoU between a predicted
segment and a ground truth segment. Next, the maximum IoU value for each
predicted segment is determined by taking the maximum along the rows of the
confusion matrix, resulting in a vector, V of length N . V contains the highest
IoU value among ground truth segment for each predicted segment.

For each predicted segment, we iterate over the thresholds in the range 0.5
to 0.95 with a step size of 0.05. Let t represent a threshold value within this
range. We compare the corresponding intersection over union (IoU) value in V ,
denoted as V j for the j-th predicted segment, to the threshold t. If the IoU
value V j is greater than or equal to the threshold t, the predicted segment is
considered a true positive (TP ). Similarly, if the IoU value V j is less than the
threshold t, the predicted segment is considered a false positive (FP ):

TP =

N∑
j=1

I(V j ≥ t), FP =

N∑
j=1

I(V j < t),

where I(·) represent the indicator function. To calculate the number of false
negatives (FN), we subtract the true positives (TP ) from the total number M
of ground truth segments. We have:

FN = M − TP.

Once the values of TP , FP , and FN are computed for each threshold t, the
F1-score can be calculated as:

F1-score =
2× precision× recall

precision + recall
,

where precision is the ratio of true positives to the sum of true positives and
false positives, and recall is the ratio of true positives to the sum of true positives
and false negatives.

After calculating the F1-score at each threshold, the normed score is obtained
by averaging the average F1-scores across all thresholds and all time series.
This normed score provides an overall measure of the change point detection
algorithm’s performance, with higher values indicating better performance. In
summary, the metrics provide a robust evaluation of the quality of change point
detection algorithms applied to the time series.

4 Proposed Methods

We first introduce a model-based method using a discriminant model to find the
optimal number of change points C of a TS by training on a synthetic signals
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data set in advance (see Fig. 1). We assume that a TS consists of a variety
of continuous signals. This assumption comes from the fact that many signal
series are easily distinguishable by the human. We furthermore assume that
there is only one source of the signal in the same time period. Under these two
assumptions, the task of change point detection is transformed into a multiple
discriminant task. Therefore, a simple idea is to first train a discriminant model
to determine whether a certain subsegment has a change point.

4.1 Synthetic Signals Generation

Our research is driven by the observation that real signals frequently exhibit
distinct patterns that can be recognized and analyzed. To capture the essence
of these patterns, we generate synthetic signals that closely simulate real data.
This synthetic data set encompasses a wide range of patterns observed in real
data sets, providing significant advantages in terms of diversity and data volume.
Consequently, we employ these artificially generated synthetic signals to train
our discriminant model.

The utilization of synthetic signals in our approach serves two important
purposes. Firstly, it alleviates the need for collecting large-scale supervised data
sets, effectively minimizing the associated overhead and resource requirements.
By leveraging synthetic signals, we can generate an extensive set of training sam-
ples that represent various patterns and scenarios, augmenting the effectiveness
of our discriminant model. This approach contributes to the reduction of manual
data labeling efforts and facilitates more efficient model training.

Furthermore, the availability of a large number of training samples enhances
the classification ability of our discriminant model. The diverse nature of the
synthetic data set allows the model to learn and generalize from a wide spectrum
of patterns and variations, enabling it to accurately classify and distinguish
between different segments in real data.

We consider the following five basic signals to compose our analog signal
training set: square wave signal, sinusoidal signal, sawtooth signal, stair signal
and constant signal, as shown in Figure 1. At the same time, we also consider a
variety of combination ways to construct complex signals, and add some noise
to make the synthetic data set more realistic.

4.2 Discriminant Model for Change Point Detection

DMSS, the algorithm we propose in this paper, is based on change point dis-
crimination and ClaSP [23] method, i.e., it solves the change point detection
problem by splitting a series into multiple discrimination problems, and then
using a linear discriminant model to detect whether there exists a change point,
as shown in Figure 1.

Let T = {t1, t2, ..., tl} be a time series consisting of l observations, we first
computes l − w + 1 overlapping windows of width w with each being split into
several sub segments xi = {ti, ti+1, ..., ti+w−1}, where i ∈ [0, ⌊l/w⌋]. To detect
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Fig. 2. Merging detected change points using three axises in Human Activity Segmen-
tation dataset. Points within a gap will be merged by predefined weights.

change points using a logistic model, we define a binary response variable yi,
which indicates whether a change has occurred at sub segment i or not.

log

(
yi

1− yi

)
= β0 + β1 · xi, (1)

yi =
exp(β0 + β1 · xi)

1 + exp(β0 + β1 · xi)
. (2)

To obtain the number of change points in the entire time series, we can sum
up the binary classification results mentioned above and take the average across
all windows:

C =
1

L

∑
j∈[0,L]

∑
i∈[0,⌊l/w⌋]

yi, (3)

where L = l − w + 1.
The logistic regression model assumes a logistic relationship between the

predictor variables and the log-odds of the binary response variable. And one
important aspect to mention is that in this step, it involves, but is not limited
to, the use of logistic regression. Any other binary classification or discriminant
model can also be utilized. In our experiments, we employed eXtreme gradient
boosting (XGBoost)[24], a boosting algorithm based on logistic regression, as an
alternative approach.

4.3 Merging Multivariate Series

The original ClaSP method was primarily designed to address univariate time se-
ries problems, which limits its ability for multivariate sequences. This constraint
becomes evident when considering scenarios involving multiple spatial signals
associated with human body postures. For example, if the motion is confined to
a single plane, relying solely on information from the y-axis would fail to cap-
ture comprehensive insights. In such cases, the incorporation of signals from the
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Algorithm 1 Merge and Combine Change Points

Require:
1: S: Number of time sequences
2: Seq[1 : S]: Time sequences with change points
3: Weights[1 : S]: Weights corresponding to change points in each sequence
4: g: Time gap threshold for combining points
Ensure:
5: Merged Seq: Merged time sequence
6: procedure Merge and Combine(N,Seq,Weights, g)
7: Merged Seq← []
8: for i← 1 to S do
9: combined point← Seq[i][1]
10: combined weight←Weights[i][1]
11: for j ← 2 to length(Seq[i]) do
12: if Seq[i][j]− combined point > g then
13: Merged Seq.append(combined point)
14: combined point← Seq[i][j]
15: combined weight←Weights[i][j]
16: else
17: combined weight← combined weight +Weights[i][j]
18: end if
19: end for
20: Merged Seq.append(combined point)
21: end for
22: return Merged Seq
23: end procedure

x-axis and z-axis becomes critical to accurately detect change points. Therefore,
the integration of information from multiple sensors assumes paramount impor-
tance in the context of change point detection, enabling a more comprehensive
understanding of complex multivariate data.

To tackle this challenge, we propose a straightforward merging method based
on interval weights, akin to a voting approach, as depicted in Figure 2. Given S
sequences with a time gap, denoted as g, between them, and assuming their mu-
tual independence, we assign weights, denoted as wi, to each sequence. Initially,
we apply an individual change point detection method to each sequence. Sub-
sequently, utilizing the assigned weights, we merge the detected change points
within each segment by considering the respective weights within an interval
surrounding the split points. The detailed algorithm for this merging process is
defined in Algorithm 1.

5 Experiments

To evaluate the performance of various methods accurately, we conducted a se-
ries of experiments using our self-labeled Human Activity Segmentation dataset
[11]. In this section, we describe the setup of our experiments, including the eval-
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uation metric, the choice of the discriminant model, and the design of weights
for merging points.

5.1 Dataset

We utilized the Human Activity Segmentation dataset [11], which is a collection
of labeled human activity sequences. The challenge involved collecting and an-
notating 10.7 hours of real-world multi-dimensional time series (TS) data. The
dataset consists of 250 TS, each comprising twelve dimensions and sampled at a
frequency of 50 Hertz (Hz). These TS were recorded using various smartphone
sensors and captured the performance of 100 different human activities. Sixteen
bachelor students participated in the data collection, showcasing diverse mo-
tion sequences during the activities. The TS data ranges from seven seconds to
fourteen minutes in duration, with a median duration of 100 seconds. Within
each TS, a varying number of potentially recurring activities are present, and
each activity has its own variable time duration. The main challenge task is to
predict the precise locations of activity changes without availability of ground
truth labels.

5.2 Discriminant Model

For the discriminant model, we employed XGBoost [25] as a straightforward
implementation. XGBoost is a popular gradient boosting algorithm known for
its robustness and effectiveness in various machine learning tasks. We used the
default parameters of XGBoost to ensure a fair comparison among different
methods.

5.3 Merging of Points

To merge neighboring points and obtain coherent activity segments, we designed
weights based on a predefined time gap, denoted as g. We set g to be 120 units
of time, representing a reasonable duration for consecutive activities. The weight
vector for merging points was defined as 1, 0, ..., 0, where the first element has
a weight of 1 and the remaining elements have weights of 0. This design choice
ensured that only the first point within the time gap was selected, effectively
merging subsequent points.

5.4 Result

Table 1 illustrates the results of our experiments, comparing the performance
of our proposed method, DMSS, with the original ClaSP method [23]. DMSS
achieved the highest F1-score of 0.411, outperforming the performance of ClaSP
and ranked the third place in HAS challenge. These results highlight the effec-
tiveness of our approach in accurately segmenting human activities.
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Table 1. Performance on Human Activity Segmentation dataset.

Method FLUSS BinSeg GSS IGTS STRAY ClaSP DMSS(ours)

F1-Score 0.214 0.263 0.152 0.141 0.227 0.395 0.411

6 Discussion

In this work, we propose a method for change point detection in time series
based on the ClaSP method. Additionally, we train an additional discriminant
model to accurately determine the number of segmentation points. To ensure
sufficient training of the discriminant model, we create and utilize synthetic
simulated data. Furthermore, in order to fully leverage the information from
multiple sequences, we present a simple yet effective merging method based on
weights and time intervals, which provides a more robust and efficient approach
to segmenting time series from multiple perspectives.

Experimental results on the Human activity segmentation dataset demon-
strate that our proposed DMSS (discriminant Model for Change Point Detection
with Sequence Merging) method outperforms the original ClaSP method, achiev-
ing higher F1-Score. However, it should be noted that the current synthetic data
used in our experiments has a relatively fixed composition of basic signal com-
ponents. Future work will explore the incorporation of statistical characteristics
of target signals into the generation process of the synthetic data set, aiming to
enhance the realism and versatility of the simulated data.
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