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Abstract. Time series segmentation (TSS) is a research problem that focuses on dividing
long multivariate sensor data into smaller, homogeneous subsequences. This task is critical
for various real-world data analysis applications, such as energy consumption monitoring,
climate change assessment, and human activity recognition (HAR). Despite its importance,
existing methods demonstrate limited efficacy on real-world multivariate time series
data. To advance the field, we organized the Human Activity Segmentation Challenge
at ECML/PKDD and AALTD 2023, featuring 57 participants. Collaborating with 15
bachelor computer science students, we gathered and annotated 10.7 hours of real-world
human motion sensor data. The challenge required participants to segment the resulting
250 multivariate time series into an unknown number of variable-sized activities. The top-8
approaches outperformed existing baselines, but show only limited improvements, capped
at 1.9 percentage points. The segmentation of real-world mobile sensing recordings
remains challenging. We release the labelled challenge data for future research.

Keywords: Ubiquitous Sensing · Human Activity Recognition · Data Mining · Unsu-
pervised Learning · Time Series Segmentation

1 Introduction

The analysis of human behaviour can provide valuable insights into health status, fitness, or
personal security [1]. This is relevant to various domains, including the medical sector [2], indus-
trial applications [3], and military operations [4]. Wearable devices, such as smartphones, have
low-cost sensors that capture the dynamics of human activities in the form of long consecutive
segments within temporal data, commonly known as time series (TS) [5]. Such data can be used,
for instance, to detect falls in the elderly [6], or to monitor patients with dementia or mental
illness [7].

To accomplish such applications, the research field of human activity recognition (HAR)
implements workflows that first segment TS motion data, then learn characteristic features and
finally classify individual activities [1]. Most HAR systems process fixed-length subsequences
extracted from sensor measurements, as opposed to processing the entirety of a single activity [8].
This leads to heterogeneity and performance losses in many downstream tasks [7]. The automatic
partitioning of multivariate sensor signals into an unknown amount of variable-sized activity
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Fig. 1: Example TS of a sport routine from subject 1 (left, indoor) and a train ride from subject 1
(right, outdoor). Activity segments are coloured. Missing dimensions are displayed as empty cells.

segments is very challenging, and many open problems still exist, such as accurately locating
activity transitions in multi-dimensional data and deciding if these are actually substantial or
just emergent signal fluctuations.

The overarching task of activity segmentation is called time series segmentation (TSS),
which is an unsupervised learning problem that seeks to discover variable-sized, distinguishable
segments separated by change points (CPs) within TS [9,10]. TSS typically is not the final aim
of data analysis, but serves as a preprocessing step to partition complex TS data for advanced
analytics such as classification [11], anomaly detection [12] or motif discovery [13]. Accurate
solutions need to be robust, segment a wide variety of different TS and handle imperfect and
noisy multi-dimensional sensor recordings from different devices. Recently, specialized statistical
methods [10] and modern data mining algorithms [14,15] have been employed to address this
task. However, as highlighted by the survey of Aminikhanghahi et al. [9], accuracy is still limited.

To bridge this gap, we conducted an ECML/PKDD 2023 discovery challenge in collab-
oration with the 8th Workshop on Advanced Analytics and Learning on Temporal Data
(AALTD@ECML)8. The competition aimed to increase the performance of multi-modal human
activity segmentation and featured 57 participants. We provided a new mobile sensing data set
from a daily setting, as opposed to the typical laboratory setup with intrusive and specialized
sensor devices [16,17]. We collected and annotated 10.7 hours of multi-dimensional real-world
TS data using heterogenous smartphone sensors capturing 100 typical human activities per-
formed by 15 bachelor students in 6 motion sequences. See Figure 1 for two examples. The
challenge task was to predict the amount and locations of activity transitions in the resulting
250 multivariate TS without any training or external data. Existing algorithms which served as
baselines like BinSeg [10] or ClaSP [15] score low to medium F1 scores (24,8% to 49,6%) on
these data sets. The winning solutions improve the state of the art by up to 1.9 percentage points
(pp) to 51.5%. This progress demonstrates the potential for further advancements in multivariate

8 https://ecml-aaltd.github.io/aaltd2023

https://ecml-aaltd.github.io/aaltd2023
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Motion Group Category Activity Subject
ID ID Examples IDs
1 1 sport jumping jacks, sit ups, plank, . . . 1,2,3,4,6,7,8
2 1 household clear dishes, vacuum living room, push couch back, . . . 1,2,3,4,6,7,8
3 1 shopping stand on escalator 1, change shoes, walk to Deichmann exit, . . . 1,3,4,5,6,7,8
1 2 commute climb stairs, ride train (standing), wait for traffic lights, . . . 1,2,3,4,5,6,7
2 2 commute go down stairs, wait, drive, . . . 1,2,3,4,5,6
3 2 sport deep squat with arm reach, reverse plank hold, side stretch left, . . . 1,2,4,5,6,7

Table 1: List of motion sequences.
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Fig. 2: Number of occurrences for single activities in the challenge data.

TSS research in general and HAR in particular. We make the labelled challenge data freely
available [18] to encourage comparative evaluations in the field.

2 Challenge Data

In collaboration with 15 bachelor computer science students (see Section 5), we created a multi-
modal data set comprising 40 twelve-dimensional multivariate smartphone sensor recordings.
These capture 6 distinct human motion sequences designed to represent pervasive behaviour
in realistic indoor and outdoor settings. Data were collected using built-in smartphone sensors
placed in the subjects’ front right trouser pockets. We annotated the activities performed and
their transitions in the recordings, resampled the data at a constant rate of 50 Hz, and segmented
it to yield 250 multivariate TS. This data set serves as a benchmark for evaluating machine
learning workflows.

The subsequent subsections provide detailed information on the data set’s design (Sub-
section 2.1), collection process (Subsection 2.2), annotation and preprocessing workflow
(Subsection 2.3), specifications (Subsection 2.4), and availability (Subsection 2.5).
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Subject Group Gender Age Size Weight
ID ID (in cm) (in kg)
1 1 M 25 180 74
2 1 F 23 155 50
3 1 M 23 179 83
4 1 M 24 167 68
5 1 F 26 166 67
6 1 F 22 180 65
7 1 F 23 170 58
8 1 F 30 172 57
1 2 M 29 183 96
2 2 M 23 183 65
3 2 M 24 182 130
4 2 M 31 180 100
5 2 M 42 171 62
6 2 M 21 186 66
7 2 M 27 186 75

Table 2: List and characteristics of participants.

2.1 Data Set Design

Two independent groups from Humboldt-Universität zu Berlin, each consisting of either 8 or
7 bachelor computer science students, recorded 3 motion sequences in 2022. These sequences
covered a total of 100 activities, with the first group focusing on indoor activities and the
second group targeting outdoor behaviours. The primary objective was to capture natural human
behaviour. A summary of the motion sequences is provided in Table 1, and specific activity
annotations are linked to individual TS.

The student cohort included 10 males and 5 females, ranging in age from 21 to 42. Further
details are presented in Table 2. Within a group, each student performed up to 3 preconceived
motion routines, consisting of different and partly recurring activities, the distribution of which
is visualized in Figure 2. The data collection yielded 40 multivariate recordings that were
subsequently cut to create a data set of 250 multi-dimensional TS. Recordings were made using
5 different smartphones from 4 brands (Huawei, Motorola, Samsung, and Xperia) and were
placed in the front right trouser pocket of (almost) all participants. The ”Physics Toolbox Sensor
Suite” application was employed to capture sensor data from a triaxial accelerometer, gyroscope,
and magnetometer, as well as latitude, longitude, and speed when available. The resulting TS
feature 12 dimensions, with 9 filled sensor data dimensions and 3 empty ones, as illustrated
in Figure 1. The empty dimensions are due to different sensors in the smartphones. To ensure
continuous recording and prevent data loss in standby mode, the ”Touch Protector” application
was also used. This smartphone placement and sensor configuration is consistent with common
practices in human activity recognition (HAR) research [19,20]. Ground truth behaviour was
captured through additional recording using another smartphone or action camera.

2.2 Data Collection

The student groups conducted the data collection over several days in the fall and winter of
2022, with tasks, roles, and responsibilities delegated among smaller teams. Prior to recording,
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Fig. 3: The preprocessing workflow for a single recording.

instructors briefed the subjects on the motion sequences and time commitments involved. During
data collection, participants initiated sensor recording, placed the phone in their front right
pocket, performed the specified motions, and then ceased recording upon completion. Additional
students guided subjects through the correct motion sequences and filmed the activities to be used
for annotations. All recordings were subsequently reviewed for data quality and securely stored.

The data collection process encountered several challenges. Both groups experienced data
loss due to hardware failure, necessitating re-recordings. We only used uninterrupted TS in the
challenge data. Organizational difficulties also arose due to illnesses among team members.
In one case, a phone had to be taped onto a subject’s pants due to a lack of pockets.

2.3 Preprocessing

A basic preprocessing pipeline was applied to the challenge data, as illustrated in Figure 3.
Student groups annotated the recordings with activity labels and transitions to establish a ground
truth, which is used for evaluation (Subsection 3.3). They manually analysed the video footage in
conjunction with the sensor data to do so. Subsequently, we synchronized the sensor dimensions
using linear interpolation, a prerequisite for most TS analysis algorithms. A constant sample
rate of 50 Hz was employed, deemed appropriate for human behaviour detection [21]. Finally,
each of the 40 recordings was cut at randomly selected activity transitions to yield a data set
of 250 multivariate TS, encompassing diverse problem settings.

2.4 Data Set Overview

The data set comprises 250 twelve-dimensional TS, capturing 15 participants performing up to
three motion sequences each. The TS range from 7 seconds to 14 minutes in duration (median 100
seconds) and contain between 1 and 15 segments; 76% of TS have 5 or fewer segments (see Fig-
ure 4, top right). Activity durations vary from half a second for waiting to 10 minutes for running,
with generally small variances between subjects and individual executions (see Figure 4, bottom).

Figure 1 presents two example TS from the challenge data, displaying all 12 dimensions.
Activities are represented as coloured segments, and missing dimensions appear as empty
cells. The sports routine (left) reveals abrupt transitions between activities, while the train ride
sequence (right) shows gradual transitions and significant variations in activity duration.

2.5 Data Availability

We make all the challenge data publicly available, complete with labels, meta-information, and
a Python data loader, on our website [18]. The data is licensed under CC-BY-NC-SA, allowing
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Fig. 4: Top: TS length and amount of change points. Bottom: Single activities and their lengths.

users to share and adapt the content, provided they give appropriate credit, use the same licence,
and refrain from commercial use.

3 Challenge Organisation

We organized the contest as a discovery challenge for ECML/PKDD 2023, in collaboration with
the 8th Workshop on Advanced Analytics and Learning on Temporal Data (AALTD@ECML).
The competition ran from April 11 to June 11, 2023, concluding at 23:59 UTC. Registration was
open until June 2, 2023. Following the competition’s end, we requested the top-ranking solutions
from competitors and, after a final review, released the scores on June 16, 2023. In total, the
challenge attracted 57 registrations, with 17 active participants submitting 240 entries. Two
winners were awarded free tickets to ECML/PKDD 2023, oral presentations of their approaches
at both the conference and the workshop, as well as publications in its proceedings.

Subsequent subsections will detail the technical aspects (Subsection 3.1), rules (Subsec-
tion 3.2), evaluation measure (Subsection 3.3), and competition results (Subsection 3.4).

3.1 Technical Details

We hosted an invite-only community competition on Kaggle 9 to disseminate challenge informa-
tion, data, baselines, and to maintain public and private leaderboards. Interested individuals could

9 https://www.kaggle.com/competitions/human-activity-segmentation-challenge

https://www.kaggle.com/competitions/human-activity-segmentation-challenge
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access the competition through an invitation link, provided upon request via a questionnaire.
We supplied Jupyter notebooks featuring an exploratory data analysis and six state-of-the-art
algorithms for TSS [18], including BinSeg [10], ClaSP [15], FLUSS [14], GGS [22], IGTS [23],
and STRAY [24]. Participants submitted their predictions as a CSV file, containing predicted
activity transitions for each of the 250 TS. These submissions were automatically scored and
ranked by the Kaggle platform.

3.2 Rules

Participants had to adhere to specific rules to join the challenge. Each participant was allowed
up to three daily submissions, using only reproducible and deterministic methods subject to
verification on request by the organizers to prevent cheating. We deemed a solution deceitful
if it relied on manually labelled annotations or machine learning algorithms that used such
annotations. Only fully unsupervised solutions were permitted to ensure a fair competition.
Additionally, the use of external data or metadata-based manual tuning of hyperparameters was
prohibited. Parameters had to be either universally set or data-driven.

The top-3 competitors were required to submit their code for a final inspection and hand-in
a report that describes their approach. Failure to fulfil these obligations resulted in forfeiture
of the award and winning status, as was the case for one participant. The challenge organizers
were ineligible to submit entries.

3.3 Evaluation Measure

In this challenge, participants were tasked with predicting the offsets of activity transitions for all
250 twelve-dimensional TS in our data set. Apart from the TS, sensor names, and overall sample
rate, no further information was provided. Ground truth annotations, kept confidential, served
as the basis for evaluating the predicted segmentations. To score submissions and generate
leaderboards, the data set was randomly partitioned into public and private sets, each containing
125 TS. No stratified sampling was applied, as TSS had to be performed for single TS without
training or external data. Final performance was assessed on the private set, yielding the ultimate
leaderboard and rankings.

For evaluating segmentation performance, we employed a well-established benchmarking
score from existing literature. Drawing inspiration from an image segmentation challenge 10, we
combined classification and clustering metrics to calculate the average F1 score across different
thresholds. Specifically, for each TS, we calculated the intersection over union (IoU) between
predicted and ground truth segments to yield a normalized score (higher is better). A threshold
was then applied to determine sufficient overlaps, generating a confusion matrix from which
the F1 score was computed. This process was iteratively applied for multiple thresholds (ranging
from 0.5 to 0.95 in steps of 0.05), and the results were averaged to generate the final normalized
score. This measure was calculated for each of the 250 TS and averaged per leaderboard to
measure the quality of a participant and infer the public and private rankings.

3.4 Competition Results

Table 3 displays the final rankings and F1 scores for the top-10 competitors. The top-2 winning
solutions achieved F1 scores exceeding 50%. Both utilized the ClaSP algorithm in a multivariate
10 https://www.kaggle.com/competitions/airbus-ship-detection/overview/
evaluation

https://www.kaggle.com/competitions/airbus-ship-detection/overview/evaluation
https://www.kaggle.com/competitions/airbus-ship-detection/overview/evaluation
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Rank F1 Score (in %) Participant No. of Entries
1 51.5 gh 46
2 50.7 Koular 12
3 49.8 Panos 14
4 49.8 infoxin 15
5 49.8 kojimar 7
6 49.8 Shayekh Islam 4
7 49.8 fuge 5
8 49.8 laffrent 11

49.6 ClaSP
9 49.6 pjmathematician 16
10 49.1 ALLAccept 11

24.8 BinSeg
23.9 FLUSS

Table 3: The final private leaderboard with top-10 best-ranking competitors and 3 baselines
(in bold / italic). The top-8 approaches outperform the best baseline ClaSP.

setting, employing strategies for selecting relevant sensor dimensions, hyper-parameter tuning,
and change point merging. Their detailed methodologies and code are available in the respective
publications [25,26]. The top-8 competitors outperformed the highest-ranking baseline, ClaSP,
which scored 49.6%. However, the performance improvement, capped at 1.9 pp, highlights the
inherent challenge of segmenting real-world mobile sensing data in a fully unsupervised manner.

4 Conclusion

We presented an overview and results of the Human Activity Segmentation Challenge at
ECML/PKDD and AALTD 2023. The contest utilized 10.7 hours of mobile sensing data
recorded with 15 bachelor students, which is now publicly available for future human activity
recognition research. In the challenge, 17 active participants competed, with the top-2 achieving
F1 scores over 50% for the segmentation task. However, the overall performance on this data
set remains limited and requires significant improvement for TSS to be a viable component
in human activity recognition workflows.

Based on this challenge, we identify several avenues for future research: (a) exploring sensor
fusion within multivariate TSS, as opposed to current methods that segment TS channels
independently and merge resulting change points; (b) investigating dimension selection for
multivariate TSS to potentially improve accuracy; and (c) advancing domain-specific data
denoising, normalization, and preprocessing, particularly to facilitate the segmentation process.
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