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Abstract. The detection of change points in multivariate signal with-
out access to annotated data is a challenging task. The fully unsuper-
vised approach requires the development of a robust algorithm that can
effectively identify unknown a priori patterns. In this article we will
present one of the solutions to “Human Activity Segmentation Chal-
lenge” ECML/PKDD’23 ([4]) where the task was to predict the offsets
of activity transitions for multivariate time series. The described solution
won second place.

Keywords: multivariate signal segmentation · unsupervised learning ·
change point detection (CPD) · human activity recognition (HAR).

1 Introduction

Detecting change points is a common task when dealing with non-stationary
time series and involves the identification of temporal boundaries that sepa-
rate homogeneous time periods. Its importance was proven in various domains,
including finance, environmental monitoring, industrial monitoring, medical con-
dition monitoring, climate change detection, etc.

One of the popular area of application of such methods are human activity
recognition (HAR) systems [1]. They are designed to automatically identify and
classify human activities based on sensor data. These systems typically involve
the use of wearable sensors, such as accelerometers and gyroscopes, to capture
the motion and movement patterns of the human body. The data collected from
these sensors is then processed and analyzed to recognize and classify different
activities which later can be applied as fitness tracking, healthcare monitoring,
personal security, gesture recognition etc.

Methods for change point detection can be roughly categorized as online
[6] or offline [7]. Offline algorithms analyze the entire dataset as a whole and
retrospectively identify points of change by examining past data. Their objective
is typically to identify all the change points in a sequence in a batch processing
mode. On the other hand, online (real-time algorithms) operate in parallel with
the monitored process. They process each incoming data point as it becomes
available, aiming to detect a change point as quickly as possible after it happens,
ideally prior to the arrival of subsequent data points. In this article we will focus
on the offline scenario.
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Traditional change point detection methods often rely on predefined assump-
tions or manual thresholds, making them less adaptive to complex and dynamic
data. To address this challenge, unsupervised machine learning (ML) meth-
ods have gained significant attention for their ability to automatically discover
change points without prior knowledge or labeled data.

2 Problem statement

Human Activity Segmentation Challenge [4] was organized as one of Discovery
Challenges during ECML PKDD 2023 conference. The objective of this challenge
was to create completely unsupervised algorithms that address the time series
segmentation problem. Many HAR systems currently adopt a strategy of pro-
cessing fixed-length subsequences extracted from sensor measurements, rather
than analyzing complete activity instances. Addressing this challenge requires
the automatic partitioning of multi-variate sensor signals into variable-sized seg-
ments of activities, the number of which is unknown. Therefore the primary
objective of this competition was focused on time series segmentation (TSS),
an unsupervised learning problem that aims to identify homogeneous segments
of variable lengths within a given time series. TSS is typically employed as a
preprocessing step to partition complex time series data for advanced analytical
tasks such as classification, anomaly detection, or motif discovery. However, per-
formance in this area remains limited, especially when dealing with real-world
time series data where the number of segments is not predetermined.

In order to achieve an accurate solution for the defined task, it was essential
to develop robust algorithm capable of segmenting a wide range of different
behaviors, while effectively handling multi-dimensional sensor recordings from
different devices.

For the evaluation, the ground truth annotations of the activity transitions
were used to measure the quality of predicted segmentations. Note that it was
not possible to use annotations to build or tune segmentation models. Moreover,
embedding human expertise about the given time series into handcrafted models
was also explicitly prohibited. Parameters were supposed to be set for the entire
data set or learned from the available data. It was also enforced by the validation
schema (a part of the score (private score) was hidden until the end of the
challenge).

2.1 Notation

In this section, we will introduce some notation that will be used later to facilitate
a clearer and more precise description of our solution.

Definition 1. A multivariate time series T is a sequence of n ∈ N real values,
T = (t1, . . . , tn), where ti ∈ Rd for i = 1, . . . , n that contains the observable
output of d sensors over time. The values are also called observations or data
points.
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Definition 2. For a given time series T , we define a subsequence Ts,e of T with
a start offset s and an end offset e which consists of the continuous observations
of T from positions s to position e (i.e., Ts,e = (ts, . . . , te) with 1 ≤ s ≤ e ≤ n).

Definition 3. We define segmentation of time series T as set of time series
subsequences Sis,ie for i ∈ I such that⋃

i∈I
Si = T (1)

and

Si ∩ Sj = ∅ for i, j ∈ I (2)

Each time series segmentation can be expressed as ordered sequence of obser-
vations of T such that ti1 , . . . , tiS with 1 < i1 < . . . < iS < n. We call these
observations change points.

The set of change points also determines the segmentation of the time series;
hence, in this paper, we will use these terms interchangeably.

Definition 4. We say that coverage Si∈I is finer than Si∈J if each element
of Si∈J can be expressed as a union of elements from Si∈I . We denote it as
Si∈I ≺ Si∈J

Definition 5. For any two time series segmentations we can define their inter-
section i.e.,

Si∈I ∧ Si∈J = {si ∩ sj for (si, sj) ∈ (Si∈I , Sj∈J)} (3)

It is easy to observe that Si∈I ∧ Si∈J ≺ Si∈I is segmentation of time series
T and

Si∈I ∧ Si∈J ≺ Si∈I and Si∈I ∧ Si∈J ≺ Si∈J (4)

In the context of human activity recognition, our objective is to perform
time series segmentation on sensor signals. This segmentation yields consecutive
subsequences that correspond to distinct activities, such as walking or running.

Within the specified task of Human Activity Segmentation Challenge, we are
presented with time series data that already possess predefined segmentation,
representing distinct activities. Our objective is to predict this segmentation
accurately. In this particular setup, the initial segmentation is concealed, thus
prohibiting the use of supervised machine learning methods. List of original
activities is used only for method validation i.e., original segmentation Si∈I will
be compared with predicted Ŝi∈J . Note that we don’t know the cardinality of
the original segmentation #I so it is possible that #I ̸= #J ;
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2.2 Dataset

A dataset of 250 twelve-dimensional multivariate time series was collected for
Human Activity Segmentation Challenge. The time series were sampled at a
frequency of 50 Hertz (Hz) and contain between seven seconds and fourteen
minutes (median 100 seconds) of human motion data (with a cumulative duration
of 10.7 hours). Distribution of signal length was presented in Fig. 1.

The recordings were taken by students from Humboldt-Universität zu Berlin
and capture few to many potentially recurring activities from a total of one hun-
dred different ones, each lasting for variable time durations. The acquired sensor
data encompasses triaxial acceleration, gyroscope, and magnetometer readings,
as well as latitude, longitude, and speed, depending on the smartphone utilized.
For all time series there were always available measurement of acceleration (x-
acc, y-acc, z-acc) and magnetometer measurements (x-mag, y-mag, z-mag) and
either set of gyroscope measurements (x-gyro, y-gyro, z-gyro) or measurements
of lat, lon and speed. So in our study, each observation in the dataset was rep-
resented by a nine-dimensional signal with sampling of 50 values collected per
second. Example of such multivariate signal was presented in Fig. 2.

Fig. 1. Distribution of signal length and availability of a given measurement in time
series.

Besides these time series, their sensor names, and the overall sample rate, no
other information was provided or permitted for use. Also use of any external
data and pre-trained models (as they have been trained on external data) was
strictly prohibited.

2.3 Validation procedure

As previously stated, the ground truth segmentation, representing distinct activ-
ities was not available during segmentation, only used for the external validation
step. To assess the performance of a given solution predicting time series seg-
ments, the multi-threshold F1 score was used. It is defined as follows:
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Fig. 2. Example of multivariate signal (ts id = 9).

For a given time series, we calculate the intersection over union (IoU, also
called Jaccard similarity coefficient [5]) of overlapping predicted and ground
truth segments, to obtain a normed score (higher is better).

IoU(S, Ŝ) =
|S ∩ Ŝ|
|S ∪ Ŝ|

(5)

Then we set a threshold to assess which overlaps are sufficient, from which a
confusion matrix is inferred, used to calculate the F1 score. A true positive (TP)
is counted when a single predicted segment matches a ground truth segment
with an IoU above the threshold. A false positive (FP) indicates a predicted
segment had no associated ground truth segment. A false negative (FN ) indicates
a ground truth segment had no associated predicted segment.

This computation is repeated for multiple thresholds and the results are
averaged to obtain the final normalized score for a given time series:

1

#ths

∑
t∈ths

2TP (t)

2TP (t) + FP (t) + FN(t)
(6)

where set of thresholds ths = {0.5, 0.55, . . . , 0.9} and where #ths denotes the
cardinality of the set ths.

To get the final score, this measure is calculated for each of the time series
and averaged.

In our analysis, we employed a range of internal metrics, including measures
of internal consistency, to evaluate the performance of our models. However,



6 G. Harańczyk

given the specific nature of the task, we also endeavored to utilize the competi-
tion scoring system as frequently as possible. After submitting segmentation for
all time series in the dataset, the value of F1 metric was calculated. It is impor-
tant to note that utilizing the competition scoring system posed some strategic
challenges due to limitations on the number of calls to the scoring API, which
were restricted to three calls per day. Additionally, it is worth mentioning that
the scoring API provided a single value for the entire solution, encompassing
all time series in the public part of validation dataset. The score for another
part of validation dataset (private score) was not available until the end of the
competition.

3 Approach selection

3.1 Baseline solutions

In the initial stages, we established a set of simple baseline solutions, which were
subsequently modified to serve as benchmarks for comparing the performance of
our proposed solution. Developing these basic baselines not only facilitated the
identification of key aspects that could potentially have a significant impact on
performance but also assisted in prioritizing their importance.

Specifically, we generated a series of segmentations using a random selection
of change points, as well as a series of segmentations based on equal subsequences
with an increasing number of generated segments (see Fig. 3).

We also conducted a series of experiments that involved segmentations using
both single and multiple dimensions (see Fig. 4). These experiments not only
helped us to reduce the number of components employed in the final model but
also enabled an assessment of the performance implications associated with the
utilization of complex models.

Fig. 3. Performance of simple baseline solutions - equal subsequences with increasing
number of generated segments and random segments.
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3.2 General idea

In order to maintain control over the final solution while keeping it as simple as
possible, we opted to generate segmentations for one-dimensional components
of given multivariate signal and subsequently aggregate them to form the fi-
nal solution. Instead of utilizing all components of the multivariate signal, we
selected only three components that exhibited the highest performance in one-
dimensional models. Our experimentation involved exploring various methods
of aggregating the results from individual components into the final solution, as
well as devising a technique to reduce the final solution to prevent overfitting.
Hence, the final solution consists of the following three steps (see Algorithm 1):

- generation of ClaSP change points for selected channels;
- consolidation of change points obtained from various channels;
- elimination of irrelevant change points through pruning.

Algorithm 1 Change Point Detection
1: function ChangePointDetection(data)
2: changePoints← ∅ ▷ Initialize empty set
3: for channel ∈ {x-acc, y-acc, z-acc} do ▷ Loop over channels
4: channelData← extractChannelData(data, channel) ▷ Extract channel data
5: cps← ClaspProcedure(channelData) ▷ Apply clasp procedure
6: changePoints← changePoints ∪ cps ▷ Merge change points
7: end for
8: changePoints← PruneFunction(changePoints) ▷ Apply prune function
9: return changePoints
10: end function

11: procedure ClaspProcedure(channelData)
12: ... ▷ Implementation details - see [2]
13: end procedure

14: procedure PruneFunction(changePoints)
15: prunedChangePoints← ∅ ▷ Initialize empty set
16: for point1, point2 ∈ changePoints do ▷ Loop over change points
17: if |point1− point2| ≤ threshold & point1 < point2 then
18: prunedChangePoints← point1 ▷ Keep only the first change point
19: end if
20: end for
21: return prunedChangePoints
22: end procedure

3.3 ClaSP (Classification Score Profile) algorithm

We conducted experiments using several segmentation methods and ultimately
selected the ClaSP (Classification Score Profile) algorithm to generate change
points for the chosen channels. In [2], it was demonstrated that ClaSP out-
performs existing state-of-the-art methods in terms of accuracy. Additionally,
the evaluation of ClaSP’s performance involved rigorous experimental analysis
using a benchmark dataset consisting of 107 distinct data sets. Remarkably,
the results indicated that ClaSP not only achieved improved accuracy but also
demonstrated impressive speed and scalability.
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Fig. 4. Performance of ClaSP algorithm applied to single components of multivariate
signal.

In our pursuit of enhancing performance, we aimed to fine-tune model pa-
rameters. In order to accomplish this, we followed the methodology outlined in
Section 4.7 of [2] and in the article [3]. However, due to limited validation ca-
pabilities, we were unable to guarantee robustness and obtain a superior set of
parameters compared to the default configuration.

3.4 Multivariate aggregation

When combining segmentations obtained from one-dimensional time series, two
primary strategies emerge as the most intuitive. The first strategy involves deem-
ing a change point as valid for the multidimensional time series if it is valid for
any of its individual dimensions. This strategy allows for variations and devi-
ations within individual dimensions while still considering the change point as
valid for the overall multidimensional time series. The second strategy entails
considering a change point as valid for a multidimensional time series only if it
is deemed valid for all of its one-dimensional components. In other words, the
change point should exhibit consistency across all dimensions.

Using notation from Section 2.1 we can express it as follows:
Scenario 1: use as a segmentation the intersection of all available one-

dimensional segmentations:∧
d

Si∈Id = Si∈I1 ∧ . . . ∧ Si∈Id (7)

Note that in our case finally we decided to use only measurements from
accelerometers (x-acc, y-acc, z-acc), so in our case multivariate aggregation will
be an intersection of these components.
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Scenario 2: we define a new segmentation W such that change point c ∈ W
if and only if c ∈ Si∈Ik for each k = 1, . . . , d. It can be also defined with some
precision threshold, i.e., c is close enough to change point in each component
segmentation.

For example, if we would get three one-dimensional segmentations:
{[0, 50], [51, 100]}, {[0, 50], [51, 80], [81, 100]}, and {[0, 50], [51, 90], [91, 100]}
then Scenario 1 would give us the aggregated segmentation as

{[0, 50], [51, 80], [81, 90], [91, 100]}

and Scenario 2 would give us:

{[0, 50], [51, 100]}.

We opted to proceed with Scenario 1, wherein a change of activity in a single
dimension is considered sufficient. We believe that within the context of our use
case, this assumption is valid. Specifically, we posit that it is possible for an
activity to change solely by altering a single component, without necessitating
simultaneous changes across all dimensions.

Upon combining the one-dimensional components, we made an intriguing ob-
servation regarding the presence of numerous closely spaced change points. This
phenomenon could be attributed to time shifts or delays in detecting activity
changes across different components. Given the sampling frequency of 50 Hz,
achieving exact alignment of change point values across all dimensions proved to
be challenging. Unfortunately, the lack of access to annotated data hindered our
ability to empirically validate this hypothesis. Nevertheless, in light of this obser-
vation, we made the decision to eliminate redundant change points. Remarkably,
this post-processing step yielded a positive impact on the performance of our
solution, further reinforcing the significance of addressing the issue of redundant
change points in the context of our study.

3.5 Pruning

As previously stated, the sampling rate for all sensors was set at 50 Hz, resulting
in the collection of 50 samples per second. Hence, if there is an absolute error
of 50 (samples) in predicting a change point, it indicates that a discrepancy
change point and the actual change point in the collected data is equal to only
one second. From the other side we believe that the transition between distinct
activities within the recorded signal may extend for few seconds. To address
this problem, without possibility to test it with annotated data, we applied the
following procedure:

For a given segmentation of time series {cpi}i∈I , in cases where the distance
between two change points, denoted as cp1 and cp2, falls below a predefined
resolution window w (i.e., d(cp1, cp2) < w), we adopt a selection criterion that
favors retaining only cp1. This decision is based on the assumption that cp1
represents the initial indication of a signal change, while cp2 and subsequent
change points are likely to be observed with a delay. By prioritizing cp1 in such
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scenarios, we aim to maintain consistency with the chronological order of change
point occurrences, acknowledging the potential presence of temporal delays in
the observed signal components.

We experimented with different lengths of resolution window, and based on
performance on public validation dataset we selected the optimal value i.e., w =
400. The selected value turned out to be also optimal for private part of validation
dataset, see Fig. 5.

Fig. 5. Impact of pruning with a given resolution window on overall model performance.

4 Summary

We have developed a robust and effective baseline approach for segmenting mul-
tivariate signals in the field of human activity recognition. Our proposed solution
demonstrates substantial superiority over defined baseline models (see Section
3.1). Notably, our solution achieved very good performance in the ’Human Ac-
tivity Segmentation Challenge’ at ECML/PKDD’23, securing the 2nd place.
Furthermore, our approach demonstrated comparable performance on both the
public and private parts of the validation dataset, providing evidence of its abil-
ity to avoid overfitting.

Given its performance, our baseline approach holds significant value as a
simple yet robust reference point for future investigations related to the identi-
fication of human activities using multivariate signal-based methods.
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The data, Python data loaders and baseline solutions can be downloaded
from: github.com/patrickzib/human activity segmentation challenge and the code
of the described solution is available at github.com/gharanczyk/ecml pkdd2023
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