0.00 0.25 0.50 0.75 $\frac{1}{\sqrt{2}}$ Anomaly Detection in Time Series

Paul Boniol Inria, ENS, PSL University paul.boniol@inria.fr

Ínría

nnnn nr

I. Introduction

 $\overline{}$ aly *What is a time series? What is an anomaly?*

Introduction: *Time series are Everywhere*

Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

Introduction: *Time series are Everywhere*

Large-scale time series database

Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Large-scale time series database

Example of Nuclear production - 58 nuclear power plants across France

Edf.fr: tinyurl.com/yc7x5xje

Large-scale time series database

Large-scale time series database

ar $\frac{1}{20}$ AALTD 2024 | 13/09/2024 | 12

• Time series *(example : number of taxi passengers in New York City)*

• Time series *(example : number of taxi passengers in New York City)*

• *Anomaly: rare point or sequence (of a given length) potentially non-desired*

AALTD 2024 | 13/09/2024 | 18

AALTD 2024 | 13/09/2024 | 19

AALTD 2024 | 13/09/2024 | 26

 $\overline{}$

Anomaly Detection methods: *A taxonomy* By domains [5] …

Anomaly Detection methods: *A taxonomy* By domains [5] …

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797. AALTD 2024 | 13/09/2024 | 35

By inputs…

Time series anomaly detection methods

Anomaly Detection methods: *A taxonomy*

By inputs…

AALTD 2024 | 13/09/2024 | 38

Anomaly Detection methods: *A taxonomy* By inputs…Time series anomaly detection methods Supervised | | Semi-supervised | Unsupervised *- Normal examples - Normal examples* **Training Training** *- Anomaly examples* dataset dataset *Time Series T Time Series T Time Series T*

Time Series T Time Series T AALTD 2024 | 13/09/2024 | 40

Time series anomaly detection methods

AALTD 2024 | 13/09/2024 | 60

Anomaly Detection methods: *A taxonomy*

By time…

Anomaly Detection methods: *A taxonomy*

By time…

<u> JAMAN TA</u>

-աստատատա

www.nam

⇜

بمصطحب المتعارضة المتالية 一

ᄁᇭ

MANAMANA

A graph-based approach

Activation score

Converting the time series to a graph:

- Existing solutions create a node per point (e.g., Visibility Graph [6,7])
- Do not scale for large time series

Visibility Graph

M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences (2009)

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(N, \mathcal{E})$ for which:

Each node is an ensemble of similar subsequences.

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

Each node is an ensemble of similar subsequences.

Each edge is associated to a weight w that corresponds to the number of times a subsequence move from one node to another.

A subsequence $T_{i,\ell}$ (with $\ell > \ell_G$) is a path in G_{ℓ_G} .

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

For a given subsequence $T_{i,\ell}$ and its corresponding path $P_{th} = \langle N^{(i)}, N^{(i+1)}, \dots, N^{(i+\ell)} \rangle,$ we define the normality score as follows: $Norm(P_{th}) =$ $i+(-1)w(N^{(j)}, N^{(j+1)}) \deg(N^{(j)}-1)$ ℓ

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(N, \mathcal{E})$ for which:

 $Norm(P_{th}(T_{j,\ell+2})) \ll Norm(P_{th}(T_{i,\ell+2}))$

Series2Graph: *An Example*

Snippet of SED time series

Series2Graph: *An Example*

Series2Graph: *An Example*

Series2Graph: *An interactive tool*

GraphAn: S2G User interface [10]

However, the approaches that have been proposed either require prior domain knowledge, or become cumbersome and expensive to use in situations with recurrent anomalies. In this work, we address these problems, and propose a graph based method, suitable for domain agnostic anomaly detection.

Compute Embedding Projection (sum variance: 0.989)

Selected Subsequence

Selected node

Original time series

Series2Graph: *To conclude*

Series2Graph++: Multivariate extension of S2G [11]

DADS: Distributed version of S2G [12]

- We proposed a user interface to explore the resulting graph [10]
- Series2Graph extensions have been proposed [11,12]

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?

Several research directions

Can the graph structure of Series2Graph help identify different time series types?

Time series Database Graph embedding per time series

AALTD 2024 | 13/09/2024 | 85

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Time series Database

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Time series Database **Graph embedding of the database**

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

 0.0 -2.5 20° 40 60 -2.5 20 40 60 $n \circ$ -2.5 20 40 60 -2.5 20 40 60 -2.5 20 40 60 80 Ω

Time series Database **Graph embedding of the database**

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Several research directions

Can the graph structure of Series2Graph help identify different time series types?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?
- Can we use this graph to perform multiple analytics?

AALTD 2024 | 13/09/2024 | 94

<u> 고고고고고</u>

∼

Ⴎ

w

How to pick automatically the best method?

Automated Solution: *Background*

Motivation:

- No one-size-fits-all model: How can we *automatically* identify the best anomaly detector given a time series?

Detection accuracy (VUS-PR) for 6 anomaly detectors across different datasets in TSB-UAD [14]

Automated Solution: *Taxonomy*

(a) Model Selection:

Selecting the best anomaly detector from a predefined candidate model set.

- *(a.1) Internal Evaluation*
- *(a.2) Meta-learning-based*

Automated Solution: *Taxonomy*

(a) Model Selection:

Selecting the best anomaly detector from a predefined candidate model set.

- *(a.1) Internal Evaluation*
- *(a.2) Meta-learning-based*

(b) Model Generation:

Creating an entirely new model for the given time series based on the candidate mode set

- *(b.1) Ensembling-based*
- *(b.2) Pseudo-label-based*

Definition: Evaluate the effectiveness of a model without any reliance on external information

- Stand-alone: Clustering Quality, EM&MV, Synthetic anomaly injection
- Collective: Model Centrality, Rank Aggregation

Image from [15]: Internal Evaluation workflow.

Image from [15]: Internal Evaluation workflow.

AALTD 2024 | 13/09/2024 | 101

Image from [15]: Internal Evaluation workflow.

Image from [15]: Internal Evaluation workflow.

Automated Solution: *Ensembling-based*

Definition: Integrate predictions from the candidate model set

- Full: OE
- Selective: HITS, IOE

Automated Solution: *Ensembling-based*

Definition: Integrate predictions from the candidate model set

- Full: OE
- Selective: HITS, IOE

Automated Solution: *Pseudo-label-based*

Definition: Generate pseudo-labels to transform the unsupervised anomaly detection problem into a supervised framework

- AutoOD: Augment, Clean
- Booster: UADB

Automated Solution: *Pseudo-label-based*

Pseudo-label-based Method Framework [16].

Automated Solution: *Meta-learning-based*

Definition: Using insights from historical labeled datasets to select the best model for new data

- Classification: Auto-Selector, MSAD
- Regression: RG, UReg, Cfact
- Nearest Neighbor: kNN
- Other Optimization: ISAC, MetaOD

Automated Solution: *Meta-learning-based*

IV. MSAD

 $\frac{1}{2}$ n *Model Selection for Anomaly Detection*

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

… But is problematic in terms of execution time

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

… But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the execution time

MSAD: *Ensembling versus Model Selection* Oracle 0.8 Ensembling is proposed as a mitigation strategy to the 0.6 VUS-PR previous limitation [17] 0.4 … But is problematic in terms of execution time 0.2 0.0 Model Selection (MS) is a solution to reduce the Oracle CGJMA **Kotest** if creatly Avid Eng AN OUT **STA CAP 1805 PCA** \mathcal{S}^k Notrinal execution time Detection time (sec):
 $\frac{10^{10} - 10^{10}}{10^{-10}}$
 $\frac{10^{-10}}{10^{-10}}$ $10³$ The best possible achievable performances (Oracle) is motivating $10¹$ $10⁰$ 10^{-2} A-19 Em Forest Normal Support **PONT STAT OF** CAN Forest 1805 MP $R_{\rm V}$ AALTD 2024 | 13/09/2024 | 115

MSAD: *Ensembling versus Model Selection* **Oracle** 0.8 Ensembling is proposed as a mitigation strategy to the 0.6 \mathbb{R} previous limitation (Aggarwal, C., C., et al. SIGKDD 2015) $D₁$ $D₂$ $D₃$ $D₂$ $D₁$ $D₃$... \cdots … But is problematic in the problematic in terms of P_1 in time $TS₁$ $TS₁$ 0.5 0.7 0.9 0 0 1 $TS₂$ Ω 0 $TS₂$ 1 0.6 0.4 0.7 Model Selection (MS) is a solution to reduce the .cc $TS₃$ 0 $\mathbf{1}$ 0 $TS₃$ 0.5 0.8 0.6 execution time $\| \cdot \| \cdot \|$ D_3 \cdots \cdots The best possible achievable **Performance** motivatime Series Time Series Candidate Performance Label
For Training Model Set Matrix[®] Candidate For Training Model Set Time series classification methods could be a solution

13/09/2024 | 116

MSAD: *Classification for Model Selection*

Research Questions (RQs)

- 1. What is the best approach:
	- 1. Individual Detectors
	- 2. Average Ensembling (Avg Ens)
	- 3. Model Selection (MS)
- 2. What is the best input: Time Series Features OR Raw Values?
- 3. What-if model selection is tested on completely new datasets?

(a) Time series T

MMMMMMMM_w,A.MMMMMMMMMMMMMM

Step 1: Acquiring Labeled Time Series

We use the TSB-UAD benchmark [14],

on which we know in advance which

detector is the best for each time series.

Step 2: Segmentation

We segment the time series into equal

length subsequences.

Each subsequence is assigned to the

same label (best detector)

Step 3: Prediction

We train a time series classification method to predict which detector is the best (using the labels from TSB-UAD).

Step 4: Selection

We pick the most selected detector for all the subsequences of a time series.

Step 5: Anomaly Score Computation

We finally compute the anomaly score

using the selected detector.

We conduct our experimental evaluation on the TSB-UAD benchmark :

We conduct our experimental evaluation on the TSB-UAD benchmark :

16 time series classification methods:

We conduct our experimental evaluation on the TSB-UAD benchmark :

16 time series classification methods:

With 8 segmentation window lengths:

Random split (70/30) of TSB-UAD benchmark between train and test

o **Raw values** is the best input compared to time series **features**

 \circ The window length influence is different based on the type of methods

- o MS outperforms the **Individual detectors** and the **Avg Ens** in terms of accuracy
- o MS outperforms **Avg Ens** in terms of execution time

- o MS outperforms the **Individual detectors** and the **Avg Ens** in terms of accuracy
- o MS outperforms **Avg Ens** in terms of execution time

- o MS outperforms the **Individual detectors** and the **Avg Ens** in terms of accuracy
- o MS outperforms **Avg Ens** in terms of execution time
- o Potential improvement in terms of classification

- o MS outperforms the **Individual detectors** and the **Avg Ens** in terms of accuracy
- o MS outperforms **Avg Ens** in terms of execution time
- o Potential improvement in terms of classification
- o Potential improvement in terms of ranking detectors

Training Set

Out-of-distribution testing: How well a model handles unfamiliar data?

Best AD on train

Out-of-distribution testing: How well a model handles unfamiliar data? (a) Avg VUS-PR for all dataset

Out-of-distribution testing: How well a model handles unfamiliar data? (a) Avg VUS-PR for all dataset

➢ **Avg Ens** is generally safer in terms of accuracy for new datasets

V. Conclusion

Research Directions

0.00 0.25 0.50 0.75

Activation score

Conclusion: *Research Directions*

o Ensembling is still better for out-of-distribution cases

Conclusion: *Research Directions*

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling

Conclusion: *Research Directions*

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling
- o Ensembling has a strong impact on execution time

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling
- o Ensembling has a strong impact on execution time
	- o Trade-off between execution time and accuracy in the selection process

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling
- o Ensembling has a strong impact on execution time
	- o Trade-off between execution time and accuracy in the selection process
- o Adding a new detector require training from scratch the pipeline

Classification-based

- o Ensembling is still better for out-of-distribution cases
	- o Combining Model Selection and Ensembling
- o Ensembling has a strong impact on execution time
	- o Trade-off between execution time and accuracy in the selection process
- o Adding a new detector require training from scratch the pipeline
	- o Improving modularity (regression-based model selection)

Regression-based

References

- 1. N. Laptev, S. Amizadeh, and Y. Billawala. 2015. **S5 - A Labeled Anomaly Detection Dataset**, version 1.0(16M).
- 2. Markus Thill, Wolfgang Konen, and Thomas Bäck. 2020. **MGAB: The Mackey-Glass Anomaly Benchmark**.
- 3. Pawel Benecki, Szymon Piechaczek, Daniel Kostrzewa, and Jakub Nalepa. 2021. **Detecting Anomalies in Spacecraft Telemetry Using Evolutionary Thresholding and LSTMs**. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (Lille, France) (GECCO '21)
- 4. Scott David Greenwald. 1990. Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information. Thesis. Massachusetts Institute of Technology.
- 5. Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. **Anomaly detection in time series: a comprehensive evaluation**. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
- 6. L. Lacasa et al., **From time series to complex networks: The visibility graph**, PNAS, 2008
- 7. M. Small et al. **Transforming Time seires into Complex Networks**, Complex Sciences (2009)
- 8. M. Small et al. **Transforming Time seires into Complex Networks**, Complex Sciences (2009)
- 9. Paul Boniol and Themis Palpanas. 2020. **Series2Graph: graph-based subsequence anomaly detection for time series.** Proc. VLDB Endow. 13, 12 (August 2020), 1821–1834.
- 10. Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020. **GraphAn: graph-based subsequence anomaly detection**. Proc. VLDB Endow. 13, 12 (August 2020), 2941–2944
- 11. Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB Journal 30, 579-602 (2021).
- 12. Wenig, P., Papenbrock, T. (2024). Series2Graph++: Distributed Detection of Correlation Anomalies in Multivariate Time Series. In: Wrembel, R., Chiusano, S., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2024
- 13. Paul Boniol and Themis Palpanas. 2020. **Series2Graph: graph-based subsequence anomaly detection for time series.** Proc. VLDB Endow. 13, 12 (August 2020), 1821–1834.
- 14. John Paparrizos, et al. 2022. **TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection**. Proc. VLDB Endow. 15, 8
- 15. Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. **Unsupervised Model Selection for Time-series Anomaly Detection**. In Proceedings of the International Conference on Learning Representations.
- 16. Lei Cao, Yizhou Yan, Yu Wang, Samuel Madden, Elke A Rundensteiner. 2023. **Autood: Automatic outlier detection**. Proceedings of the ACM on Management of Data, 1(1): 1-27. ACM, New York, NY, USA.
- 17. Charu C. Aggarwal and Saket Sathe. 2015. **Theoretical Foundations and Algorithms for Outlier Ensembles**. SIGKDD Explor. Newsl. 17, 1

People that contributed to this presentation

Prof. Themis Palpanas *Université Paris Cité; IUF*

Mohammed Meftah *EDF R&D*

Prof. Panos Trahanias

Prof. John Paprrizos

Ohio State University

Prof. Michael Franklin *University of Chicago*

ICS-FORTH

Emmanouil Sylligardos

Ecole Normale Supérieure

Qinghua Liu *Ohio State University*

And many others... And many others...

Thank you for attending!