Anomaly Detection in Time Series

Paul Boniol
Inria, ENS, PSL University
paul.boniol@inria.fr

I. Introduction

What is a time series? What is an anomaly?

Introduction: Time series are Everywhere

Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

Introduction: Time series are Everywhere

Large-scale time series database

Energy Production

Large-scale time series database

Example of Nuclear production

58 nuclear power plants across France

Large-scale time series database

Example of Nuclear production

- 58 nuclear power plants across France
- 2000+ sensors per power plant
- 30 years of data collections

A total of 1.5 PetaBytes

Large-scale time series database

Example of Nuclear production

- 58 nuclear power plants across France
- 2000+ sensors per power plant
- 30 years of data collections

A total of 1.5 PetaBytes

Other source of production

- New sensors with higher acquisition rate

• Time series T (example : number of taxi passengers in New York City)

• Time series T (example : number of taxi passengers in New York City)

• Subsequence $T_{i,\ell}$ with $i=4400,\ell=250$

• Time series T (example : number of taxi passengers in New York City)

6000

8000

4000

Anomaly: rare point or sequence (of a given length) potentially non-desired

2000

point

anomaly

1200

200

1000 1050 1100 1150

900

150

Example of

point-based

anomaly [1]

Time series

300

50

600

distribution

100

(a. 1.1) Point anomaly outside the

healthy range of values

(dotted black line)

45200

45400

45800

2500

2750

3000

45600

Example of

II. Time Series Anomaly Detection

How does it work?

By domains [5] ...

By domains [5] ...

By inputs...

Time series anomaly detection methods

By inputs...

Time series anomaly detection methods

Supervised

Anomaly Dete

By inputs...

Time

Supervised

Anomaly Dete

By inputs...

Supervised

Supervised anomaly detection (e.g., classification)

Time

Class 1: Time series without any vibrations

Class 2: Time series with a vibrations

Anomaly Dete

By inputs...

Time

Supervised

- Normal examples **Training** - Anomaly examples dataset Time Series T

Class 1: Time series without any vibrations

Class 2: Time series with a vibrations

Anomaly Dete Primary circuit By inputs... → GRE More info: Time On the method On the use case Supervised Class 1: Ti ations - Normal examples DCE journal 2023 SIGMOD 2022 **Training** - Anomaly examples DATA-CENTRIC ENGINEERING ACM SIGMOD dataset Time Series T

Vibration

By methods...

By methods...

Time series anomaly detection methods

Distance-based

By methods...

By methods...

By methods...

By methods...

By time...

Time Series Anomaly Detection

Paul Boniol, Qinghua Liu, John Paparrizos, and Themis Palpanas.

Ano Dete met A ta.

Video (EDBT 2023 Tutorial)

https://www.youtube.com/watch?v=96869qimXAA&t=1s

Slides (VLDB 2024 Tutorial)

https://drive.google.com/file/d/1Vyz6 H0E16IpbVZXgtiZVnU9Ie8zAJaog/view

SIGMOD Blogpost

https://wp.sigmod.org/? p=3739

Reconstruction-

By time...

III. Series2Graph

A graph-based approach

Converting the time series to a graph:

- Existing solutions create a node per point (e.g., Visibility Graph [6,7])
- Do not scale for large time series

Complex network for time series [8]

M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences (2009)

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

Each node is an ensemble of similar subsequences.

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

Each node is an ensemble of similar subsequences.

Each edge is associated to a weight w that corresponds to the number of times a subsequence move from one node to another.

A subsequence $T_{i,\ell}$ (with $\ell > \ell_G$) is a path in G_{ℓ_C} .

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

For a given subsequence $T_{i,\ell}$ and its corresponding path $P_{th} = \langle N^{(i)}, N^{(i+1)}, ..., N^{(i+\ell)} \rangle$, we define the normality score as follows: $\sum_{i+\ell-1} w(N^{(j)}, N^{(j+1)}) \deg(N^{(j)} - 1)$

$$Norm(P_{th}) = \sum_{j=i}^{N} \frac{w(N^{j}, N^{j}) \operatorname{deg}(N^{j-1})}{\ell}$$

Graph G_{ℓ_G} [9]:

Given a data series T, and an input length ℓ_G , we build a graph $G_{\ell_G}(\mathcal{N}, \mathcal{E})$ for which:

$$Norm\left(P_{th}(T_{j,\ell+2})\right) \ll Norm\left(P_{th}(T_{i,\ell+2})\right)$$

3 components of the *Principal Component Analysis* applied on all subsequences of *T*

3 components of the *Principal Component Analysis* applied on all subsequences of *T*

(b) First step: subsequence embedding

- 3 components of the *Principal Component Analysis* applied on all subsequences of *T*
- Gaussian density estimation on each radius (among a fixed number of radius)

- 3 components of the *Principal Component Analysis* applied on all subsequences of *T*
- Gaussian density estimation on each radius (among a fixed number of radius)
- Assign each subsequence to a node and set an edge for each transition between nodes

Series2Graph: An Example

Snippet of SED time series

Series2Graph: An Example

Series2Graph: An Example

path in the graph

Series2Graph: *An interactive tool*

GraphAn: S2G User interface [10]

Series2Graph: To conclude

Series2Graph++: Multivariate extension of S2G [11]

In summary:

- We proposed a user interface to explore the resulting graph [10]
- Series2Graph extensions have been proposed [11,12]

GraphAn: S2G User interface [10]

DADS: Distributed version of S2G [12]

Several research directions

 Can the graph structure of Series2Graph help identify different time series types?

Several research directions

Can the graph structure of Series2Graph help identify different time series types?

Time series Database 0.0 -2.560 -2.560 -2.560 -2.520 60 -2.520

Several research directions

 Can the graph structure of Series2Graph help identify different time series types?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Graph embedding of the database

Several research directions

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Graph embedding of the database

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

Several research directions

Can the graph structure of Series2Graph help identify different time series types?

Is a unique graph meaningful for a set of time series?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?

- Can the graph structure of Series2Graph help identify different time series types?
- Is a unique graph meaningful for a set of time series?
- Can we use this graph to perform multiple analytics?

Series2Graph: Seve Graph-based Subsequence Anomaly Detection in Time Series Paul Boniol and Themis Palpanas. Ca Ser 275 GitHub Repositories Paper Is a (VLDB 2020) TSB-UAD **DADS** S2Gpp Ca pe **HPI-Information**https://www.vldb.org/pvldb TheDatumOrg/ **HPI-Information-**/vol13/p1821-boniol.pdf Systems/DADS Systems/S2Gpp TSB-UAD

IV. Automated Solutions

How to pick automatically the best method?

Automated Solution: Background

Motivation:

No one-size-fits-all model: How can we automatically identify the best anomaly detector given a time series?

Detection accuracy (VUS-PR) for 6 anomaly detectors across different datasets in TSB-UAD [14]

Automated Solution: Taxonomy

(a) Model Selection:

Selecting the best anomaly detector from a predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based

Automated Solution: *Taxonomy*

(a) Model Selection:

Selecting the best anomaly detector from a predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based

(b) Model Generation:

Creating an entirely new model for the given time series based on the candidate mode set

- (b.1) Ensembling-based
- (b.2) Pseudo-label-based

Definition: Evaluate the effectiveness of a model without any reliance on external information

- Stand-alone: Clustering Quality, EM&MV, Synthetic anomaly injection
- Collective: Model Centrality, Rank Aggregation

Automated Solution: Ensembling-based

Definition: Integrate predictions from the candidate model set

- Full: OE

- Selective: HITS, IOE

Automated Solution: Ensembling-based

Definition: Integrate predictions from the candidate model set

- Full: OE

- Selective: HITS, IOE

Automated Solution: Pseudo-label-based

Definition: Generate pseudo-labels to transform the unsupervised anomaly detection problem into a supervised framework

AutoOD: Augment, Clean

- Booster: UADB

Automated Solution: Pseudo-label-based

Pseudo-label-based Method Framework [16].

Automated Solution: Meta-learning-based

Definition: Using insights from historical labeled datasets to select the best model for new data

Classification: Auto-Selector, MSAD

- Regression: RG, UReg, Cfact

Nearest Neighbor: kNN

Other Optimization: ISAC, MetaOD

Automated Solution: Meta-learning-based

IV. MSAD

Model Selection for Anomaly Detection

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

... But is problematic in terms of execution time

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

... But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the execution time

Ensembling is proposed as a mitigation strategy to the previous limitation [17]

... But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the execution time

The best possible achievable performances (Oracle) is motivating

Oracle

Oracle

MSAD: Classification for Model Selection

Research Questions (RQs)

- 1. What is the best approach:
 - 1. Individual Detectors
 - 2. Average Ensembling (Avg Ens)
 - 3. Model Selection (MS)
- 2. What is the best input: Time Series Features OR Raw Values?
- 3. What-if model selection is tested on completely new datasets?

(a) Time series T

Step 1: Acquiring Labeled Time Series

We use the TSB-UAD benchmark [14], on which we know in advance which detector is the best for each time series.

Step 2: Segmentation

We segment the time series into equal length subsequences.

Each subsequence is assigned to the same label (best detector)

Step 3: Prediction

We train a time series classification method to predict which detector is the best (using the labels from TSB-UAD).

Step 4: Selection

We pick the most selected detector for all the subsequences of a time series.

Step 5: Anomaly Score Computation

We finally compute the anomaly score using the selected detector.

We conduct our experimental evaluation on the TSB-UAD benchmark:

We conduct our experimental evaluation on the TSB-UAD benchmark:

16 time series classification methods:

We conduct our experimental evaluation on the TSB-UAD benchmark:

16 time series classification methods:

With 8 segmentation window lengths:

Raw values is the best input compared to time series features

The window length influence is different based on the type of methods

- MS outperforms the Individual detectors and the Avg Ens in terms of accuracy
- MS outperforms Avg Ens in terms of execution time

- MS outperforms the Individual detectors and the Avg Ens in terms of accuracy
- MS outperforms Avg Ens in terms of execution time

- MS outperforms the Individual detectors and the Avg Ens in terms of accuracy
- MS outperforms Avg Ens in terms of execution time
- Potential improvement in terms of classification

- MS outperforms the Individual detectors and the Avg Ens in terms of accuracy
- MS outperforms Avg Ens in terms of execution time
- Potential improvement in terms of classification
- Potential improvement in terms of ranking detectors

Training Set

Out-of-distribution testing: How well a model handles unfamiliar data?

Best AD on train

Out-of-distribution testing: How well a model handles unfamiliar data? (a) Avg VUS-PR for all dataset

Out-of-distribution testing: How well a model handles unfamiliar data? (a) Avg VUS-PR for all dataset

Avg Ens is generally safer in terms of accuracy for new datasets

Out-of

Choose Wisely:

An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series. Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas.

Paper (VLDB 2023)

https://helios2.mi.parisdescartes.fr/~themisp/publications/pvldb23-msad.pdf

Demo (ICDE 2024)

https://adecimots.streamlit.app/

GitHub Repo

boniolp/MSAD

aset

V. Conclusion

Research Directions

Ensembling is still better for out-of-distribution cases

- Ensembling is still better for out-of-distribution cases
 - **Combining Model Selection and Ensembling**

- Ensembling is still better for out-of-distribution cases
 - **Combining Model Selection and Ensembling**

- Ensembling is still better for out-of-distribution cases
 - **Combining Model Selection and Ensembling**
- Ensembling has a strong impact on execution time

- Ensembling is still better for out-of-distribution cases
 - Combining Model Selection and Ensembling
- Ensembling has a strong impact on execution time
 - Trade-off between execution time and accuracy in the selection process

- Ensembling is still better for out-of-distribution cases
 - Combining Model Selection and Ensembling
- Ensembling has a strong impact on execution time
 - Trade-off between execution time and accuracy in the selection process
- Adding a new detector require training from scratch the pipeline

Classification-based

- Ensembling is still better for out-of-distribution cases
 - Combining Model Selection and Ensembling
- Ensembling has a strong impact on execution time
 - Trade-off between execution time and accuracy in the selection process
- Adding a new detector require training from scratch the pipeline
 - Improving modularity (regression-based model selection)

Regression-based

References

- 1. N. Laptev, S. Amizadeh, and Y. Billawala. 2015. S5 A Labeled Anomaly Detection Dataset, version 1.0(16M).
- 2. Markus Thill, Wolfgang Konen, and Thomas Bäck. 2020. MGAB: The Mackey-Glass Anomaly Benchmark.
- 3. Pawel Benecki, Szymon Piechaczek, Daniel Kostrzewa, and Jakub Nalepa. 2021. **Detecting Anomalies in Spacecraft Telemetry Using Evolutionary Thresholding and LSTMs**. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (Lille, France) (GECCO '21)
- 4. Scott David Greenwald. 1990. Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information. Thesis. Massachusetts Institute of Technology.
- 5. Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. **Anomaly detection in time series: a comprehensive evaluation**. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
- 6. L. Lacasa et al., From time series to complex networks: The visibility graph, PNAS, 2008
- 7. M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences (2009)
- 8. M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences (2009)
- 9. Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. VLDB Endow. 13, 12 (August 2020), 1821–1834.
- 10. Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020. **GraphAn: graph-based subsequence anomaly detection**. Proc. VLDB Endow. 13, 12 (August 2020), 2941–2944
- 11. Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB Journal 30, 579–602 (2021).
- 12. Wenig, P., Papenbrock, T. (2024). Series2Graph++: Distributed Detection of Correlation Anomalies in Multivariate Time Series. In: Wrembel, R., Chiusano, S., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2024
- 13. Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. VLDB Endow. 13, 12 (August 2020), 1821–1834.
- 14. John Paparrizos, et al. 2022. TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. Proc. VLDB Endow. 15, 8
- 15. Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. **Unsupervised Model Selection for Time-series Anomaly Detection**. In Proceedings of the International Conference on Learning Representations.
- 16. Lei Cao, Yizhou Yan, Yu Wang, Samuel Madden, Elke A Rundensteiner. 2023. **Autood: Automatic outlier detection**. Proceedings of the ACM on Management of Data, 1(1): 1-27. ACM, New York, NY, USA.
- 17. Charu C. Aggarwal and Saket Sathe. 2015. Theoretical Foundations and Algorithms for Outlier Ensembles. SIGKDD Explor. Newsl. 17, 1

People that contributed to this presentation

Prof. Themis Palpanas Université Paris Cité; IUF

Mohammed Meftah EDF R&D

Prof. Panos Trahanias

Prof. John Paprrizos Ohio State University

Prof. Michael Franklin University of Chicago

ICS-FORTH

Emmanouil Sylligardos Ecole Normale Supérieure

Thank you for attending!