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Anomaly Detection methods: A taxonomy

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc. 
VLDB Endow. 15, 9 (May 2022), 1779–1797.
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the detection
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precursors
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Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

Vibration

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Class 2: Time series with a vibrations

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Class 1: Time series without any vibrations

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water
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Supervised 
anomaly 

detection (e.g., 
classification)

Explanation of 
the detection

Identification of 
precursors
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on this use case

More info :

On the use case

DCE journal 2023

On the method

SIGMOD 2022
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Time series anomaly detection methods

Distance-based
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Distance-based
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Distribution-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Time series anomaly detection methods

Distance-based Density-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LOF

E.g.,
GrammarViz
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Time series anomaly detection methods

Distance-based Density-based Prediction-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LOF

E.g.,
GrammarViz
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Time series anomaly detection methods

Distance-based Density-based Prediction-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Forecasting-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LOF

E.g.,
GrammarViz
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Time series anomaly detection methods

Distance-based Density-based Prediction-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Reconstruction
-based

Forecasting-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LOF

E.g.,
GrammarViz
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Anomaly Detection methods: A taxonomy
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Time series anomaly detection methods

Distance-based Density-based Prediction-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Reconstruction
-based

Forecasting-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LSTM,CNN

POLY

E.g.,
PCA

AutoEncoder

E.g.,
LOF

E.g.,
GrammarViz
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Anomaly 
Detection 
methods: 
A taxonomy
By time…
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Anomaly 
Detection 
methods: 
A taxonomy
By time…

Number of methods proposed per 
Second-level categories
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Anomaly 
Detection 
methods: 
A taxonomy
By time…

Number of methods proposed that can handle
Univariate or Multivariate time series

Univariate

MultivariateSemi-
Supervised

Unsupervised

Number of methods proposed that are 
Unsupervised or Semi-Supervised
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Anomaly 
Detection 
methods: 
A taxonomy
By time…

Video (EDBT 2023 Tutorial)

Time Series Anomaly Detection 

Paul Boniol, Qinghua Liu, John Paparrizos, and Themis Palpanas.

Slides (VLDB 2024 Tutorial)

https://www.youtube.com/w
atch?v=96869qimXAA&t=1s

https://drive.google.com/file/d/1Vyz6
H0E16IpbVZXgtiZVnU9Ie8zAJaog/view

https://wp.sigmod.org/?
p=3739

SIGMOD Blogpost
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Anomaly 
Detection 
methods: 
A taxonomy
By time…

AALTD 2024 | 13/09/2024 | 65



(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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III. Series2Graph

A graph-based approach
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Series2Graph: From time series to a graph

Converting the time series to a graph: 
- Existing solutions create a node per 

point (e.g., Visibility Graph [6,7])
- Do not scale for large time series

Visibility Graph

M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences 
(2009)

Complex network for time 
series [8]
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Series2Graph: From time series to a graph

Graph 𝐺ℓ𝐺
[9]: 

Given a data series 𝑇, and an input length ℓ𝐺, we build a graph 𝐺ℓ𝐺
𝒩, ℰ for which:
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Series2Graph: From time series to a graph

Graph 𝐺ℓ𝐺
[9]:

Given a data series 𝑇, and an input length ℓ𝐺, we build a graph 𝐺ℓ𝐺
𝒩, ℰ for which:

𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)
Each node is an ensemble of similar 
subsequences.
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Series2Graph: From time series to a graph

Graph 𝐺ℓ𝐺
[9]:

Given a data series 𝑇, and an input length ℓ𝐺, we build a graph 𝐺ℓ𝐺
𝒩, ℰ for which:

Each node is an ensemble of similar 
subsequences.

Each edge is associated to a weight 𝑤 
that corresponds to the number of times 
a subsequence move from one node to 
another.

A subsequence 𝑇𝑖,ℓ (with ℓ > ℓ𝐺) is a 
path in 𝐺ℓ𝐺

.𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)

𝐺ℓ𝐺
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Series2Graph: From time series to a graph

Graph 𝐺ℓ𝐺
[9]:

Given a data series 𝑇, and an input length ℓ𝐺, we build a graph 𝐺ℓ𝐺
𝒩, ℰ for which:

𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)

𝐺ℓ𝐺
For a given subsequence 𝑇𝑖,ℓ and its corresponding path

𝑃𝑡ℎ =< 𝑁(𝑖), 𝑁(𝑖+1), … , 𝑁 𝑖+ℓ >, 
we define the normality score as follows:

𝑁𝑜𝑟𝑚 𝑃𝑡ℎ = ෍
𝑗=𝑖

𝑖+ℓ−1 𝑤 𝑁 𝑗 , 𝑁 𝑗+1 deg(𝑁 𝑗 − 1)

ℓ

AALTD 2024 | 13/09/2024 | 71



Series2Graph: From time series to a graph

Graph 𝐺ℓ𝐺
[9]:

Given a data series 𝑇, and an input length ℓ𝐺, we build a graph 𝐺ℓ𝐺
𝒩, ℰ for which:

𝑁𝑜𝑟𝑚 𝑃𝑡ℎ 𝑇𝑗,ℓ+2 ≪ 𝑁𝑜𝑟𝑚 𝑃𝑡ℎ 𝑇𝑖,ℓ+2

𝑇𝑗+2,ℓ

𝑇𝑗+1,ℓ

𝑇𝑗,ℓ

𝑇𝑖,ℓ
𝑇𝑖+2,ℓ

𝑇𝑖+1,ℓ

𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)

𝐺ℓ𝐺
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Series2Graph: Computation Steps

100000 2500 5000 7500
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Series2Graph: Computation Steps

m𝑎𝑥 𝑇 ∗ 𝟏ℓ−𝜆

𝑟𝑦  

min 𝑇 ∗ 𝟏ℓ−𝜆𝑟𝑧  

𝑣𝑟𝑒𝑓  
100000 2500 5000 7500

(b) First step: subsequence embedding

(a) Data 
series 𝑇

3 components of the Principal Component 
Analysis applied on all subsequences of 𝑇

1
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Series2Graph: Computation Steps

𝑟𝑧  

𝑣𝑟𝑒𝑓  

m𝑎𝑥 𝑇 ∗ 𝟏ℓ−𝜆
𝑟𝑦  

𝑟𝑦  

min 𝑇 ∗ 𝟏ℓ−𝜆𝑟𝑧  

𝑣𝑟𝑒𝑓  
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(b) First step: subsequence embedding

(a) Data 
series 𝑇

3 components of the Principal Component 
Analysis applied on all subsequences of 𝑇
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Series2Graph: Computation Steps

𝑟𝑧  

𝑣𝑟𝑒𝑓  

m𝑎𝑥 𝑇 ∗ 𝟏ℓ−𝜆
𝑟𝑦  
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(c) Second step: node creation(b) First step: subsequence embedding

(a) Data 
series 𝑇

3 components of the Principal Component 
Analysis applied on all subsequences of 𝑇

Gaussian density estimation on each
radius (among a fixed number of radius)

1 2
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Series2Graph: Computation Steps

𝑤1 = 𝑛1

𝑤2 = 𝑛2
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(d) Third step: edge creation

𝑟𝑧  

𝑣𝑟𝑒𝑓  

m𝑎𝑥 𝑇 ∗ 𝟏ℓ−𝜆
𝑟𝑦  
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(c) Second step: node creation(b) First step: subsequence embedding

(a) Data 
series 𝑇

3 components of the Principal Component 
Analysis applied on all subsequences of 𝑇

Gaussian density estimation on each
radius (among a fixed number of radius)

Assign each subsequence to a node and set 
an edge for each transition between nodes

1 2 3
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Series2Graph: An Example

52000 1300 2600 3900 6500

Snippet of SED time series
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52000 1300 2600 3900 6500

Snippet of SED time series
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Series2Graph: An Example

52000 1300 2600 3900 6500

Snippet of SED time series

Pattern following a recurrent 
path in the graph

Pattern following an unusual 
path in the graph
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Series2Graph: 
An interactive tool

(a) Screenshot of GraphAn (GUI of Series2Graph)

(a.3)(a.2)
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(b) Screenshot of SAD (GUI of NormA)

(b.1)

(b.2)

(b.3)
NormA

GraphAn: S2G User interface [10]
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Series2Graph: 
To conclude

In summary:

- We proposed a user 
interface to explore the 
resulting graph [10]

- Series2Graph extensions 
have been proposed [11,12]

DADS: Distributed version of S2G [12]

Series2Graph++: Multivariate extension of S2G [11]

(a) Screenshot of GraphAn (GUI of Series2Graph)
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NormA ST OM P

(b) Screenshot of SAD (GUI of NormA)

(b.1)

(b.2)

(b.3)
NormA

GraphAn: S2G User interface [10]
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Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

Several research directions
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- Can the graph structure of 
Series2Graph help identify 
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Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

- Is a unique graph meaningful 
for a set of time series?

Time series Database

Several research directions
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Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

- Is a unique graph meaningful 
for a set of time series?

2750 140 2750 140

Several research directions

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]
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Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

- Is a unique graph meaningful 
for a set of time series?

2750 1402750 140

Several research directions

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]

AALTD 2024 | 13/09/2024 | 92



Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

- Is a unique graph meaningful 
for a set of time series?

- Can we use this graph to 
perform multiple analytics?

2750 1402750 140

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]

Clustering?
Classification?
Segmentation?

Several research directions
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Series2Graph: What next?

- Can the graph structure of 
Series2Graph help identify 
different time series types?

- Is a unique graph meaningful 
for a set of time series?

- Can we use this graph to 
perform multiple analytics?

2750 1402750 140

Trace dataset (Class 2) Trace dataset (Class 1)

Clustering?
Classification?
Segmentation?

Several research directions Series2Graph: 
Graph-based Subsequence Anomaly Detection in Time Series

Paul Boniol and Themis Palpanas.

GitHub Repositories

HPI-Information-
Systems/S2Gpp

HPI-Information-
Systems/DADS

TheDatumOrg/
TSB-UAD

https://www.vldb.org/pvldb
/vol13/p1821-boniol.pdf

S2GppDADSTSB-UAD

Paper 
(VLDB 2020)
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(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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IV. Automated Solutions

How to pick automatically the best method?
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Automated Solution: Background

Motivation:

- No one-size-fits-all model: How can we 
automatically identify the best anomaly 
detector given a time series?

Detection accuracy (VUS-PR) for 6 anomaly detectors 
across different datasets in TSB-UAD [14]
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Automated Solution: Taxonomy

(a) Model Selection:

Selecting the best anomaly detector from a
predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based
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Automated Solution: Taxonomy

(a) Model Selection:

Selecting the best anomaly detector from a
predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based

(b) Model Generation:

Creating an entirely new model for the given 
time series based on the candidate mode set

- (b.1) Ensembling-based
- (b.2) Pseudo-label-based
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Automated Solution: Internal Evaluation

VLDB 2024 | 27/08/2024 | 99

Definition: Evaluate the effectiveness of 
a model without any reliance on 
external information

- Stand-alone: Clustering Quality, 
EM&MV, Synthetic anomaly injection

- Collective: Model Centrality, Rank 
Aggregation

99



Automated Solution: Internal Evaluation

Image from [15]: Internal Evaluation workflow.

Rankings
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Image from [15]: Internal Evaluation workflow.
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Automated Solution: Internal Evaluation

Image from [15]: Internal Evaluation workflow.
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Automated Solution: Ensembling-based

Definition: Integrate predictions from 
the candidate model set

- Full: OE

- Selective: HITS, IOE
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Automated Solution: Pseudo-label-based

Definition: Generate pseudo-labels to 
transform the unsupervised
anomaly detection problem into a 
supervised framework

- AutoOD: Augment, Clean
- Booster: UADB
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Automated Solution: Pseudo-label-based

Pseudo-label-based Method Framework [16].
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Automated Solution: Meta-learning-based

Definition: Using insights from historical 
labeled datasets to select the best 
model for new data

- Classification: Auto-Selector, MSAD

- Regression: RG, UReg, Cfact

- Nearest Neighbor: kNN

- Other Optimization: ISAC, MetaOD
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Automated Solution: Meta-learning-based

Definition: Using insights from historical 
labeled datasets to select the best 
model for new data

- Classification: Auto-Selector, MSAD

- Regression: RG, UReg, Cfact

- Nearest Neighbor: kNN

- Other Optimization: ISAC, MetaOD

How can we do “model selection” for time series anomaly detection?

Is it better than simply ensembling detectors?
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(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Model Selection for Anomaly Detection
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MSAD: Ensembling versus Model Selection

Ensembling is proposed as a mitigation strategy to the 

previous limitation [17]

0 2500 5000

0 2500 5000

Time Series

Anomaly Score

𝐷0 𝐷1 𝐷2 𝐷𝑛
…Set of 

Detectors

Run all detectors

Average all anomaly scores
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Ensembling is proposed as a mitigation strategy to the 

previous limitation [17]

MSAD: Ensembling versus Model Selection
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Ensembling is proposed as a mitigation strategy to the 

previous limitation [17]

… But is problematic in terms of execution time

MSAD: Ensembling versus Model Selection
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0 2500 5000

0 2500 5000

Time Series

Anomaly Score

𝐷0 𝐷1 𝐷2 𝐷𝑛
…Set of 

Detectors

Choose the best detector

Ensembling is proposed as a mitigation strategy to the 

previous limitation [17]

… But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the 

execution time

MSAD: Ensembling versus Model Selection
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Ensembling is proposed as a mitigation strategy to the 

previous limitation [17]

… But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the 

execution time

The best possible achievable performances (Oracle) is 

motivating

OracleMSAD: Ensembling versus Model Selection
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Ensembling is proposed as a mitigation strategy to the 

previous limitation (Aggarwal, C., C., et al. SIGKDD 2015)

… But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the 

execution time

The best possible achievable performances (Oracle) is 

motivating

Oracle

Candidate 
Model Set

Performance 
Matrix

Label
Time Series
For Training

Time series classification methods could be a solution

MSAD: Ensembling versus Model Selection
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1. What is the best approach: 

1. Individual Detectors

2. Average Ensembling (Avg Ens)

3. Model Selection (MS)

2. What is the best input: Time Series Features OR Raw Values?

3. What-if model selection is tested on completely new datasets?

Research Questions (RQs)

MSAD: Classification for Model Selection
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(a) Time series 𝑇

Step 1: Acquiring Labeled 

Time Series

We use the TSB-UAD benchmark [14], 

on which we know in advance which 

detector is the best for each time series.

MSAD: Experimental Pipeline
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(a) Time series 𝑇

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ …

(b) Set of subsequences of length ℓ

Step 2: Segmentation

We segment the time series into equal 

length subsequences.

Each subsequence is assigned to the 

same label (best detector)

MSAD: Experimental Pipeline
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(a) Time series 𝑇

… …

𝑃 𝑇𝑖,ℓ = 𝐷2

𝑃 𝑇𝑗,ℓ = 𝐷1

𝑃 𝑇𝑘,ℓ = 𝐷2

𝑃 𝑇𝑙,ℓ = 𝐷0

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ …

(b) Set of subsequences of length ℓ

(c) 
Detector 
selection 
method

Step 3: Prediction

We train a time series classification 

method to predict which detector is the 

best (using the labels from TSB-UAD).

MSAD: Experimental Pipeline
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(a) Time series 𝑇

… …

𝑃 𝑇𝑖,ℓ = 𝐷2

𝑃 𝑇𝑗,ℓ = 𝐷1

𝑃 𝑇𝑘,ℓ = 𝐷2

𝑃 𝑇𝑙,ℓ = 𝐷0

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ …

(b) Set of subsequences of length ℓ

(c) 
Detector 
selection 
method

MSAD: Experimental Pipeline
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(a) Time series 𝑇

𝐷0

𝐷1

𝐷2

𝐷𝑛

… …

𝑃 𝑇𝑖,ℓ = 𝐷2

𝑃 𝑇𝑗,ℓ = 𝐷1

𝑃 𝑇𝑘,ℓ = 𝐷2

𝑃 𝑇𝑙,ℓ = 𝐷0

… …

(d
) M

ajority vo
ting

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ …

(b) Set of subsequences of length ℓ

(c) 
Detector 
selection 
method

Step 4: Selection

We pick the most selected detector for 

all the subsequences of a time series.

MSAD: Experimental Pipeline
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(a) Time series 𝑇
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(e) Anomaly 
score S𝑇

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ …

(b) Set of subsequences of length ℓ

(c) 
Detector 
selection 
method

Step 5: Anomaly Score 

Computation

We finally compute the anomaly score 

using the selected detector.

MSAD: Experimental Pipeline
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We conduct our experimental evaluation  on the TSB-UAD benchmark :

MSAD: Experimental Evaluation
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16 time series classification methods:
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We conduct our experimental evaluation  on the TSB-UAD benchmark :

16 time series classification methods:

16

32

64

128

256

512

768

1024

With 8 segmentation window lengths:

Random split (70/30) of TSB-UAD benchmark between train and test

MSAD: Experimental Evaluation
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o Raw values is the best input compared to time series features
Execution Time (seconds)

Accuracy (VUS-PR)

MSAD: Experimental Evaluation
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o The window length influence is different based on the type of methods

Window length Window length

MSAD: Experimental Evaluation
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MSAD: Experimental Evaluation
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o MS outperforms the Individual detectors 

and the Avg Ens in terms of accuracy

o MS outperforms Avg Ens in terms of 

execution time



MSAD: Experimental 
Evaluation
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Improving
classification 

MSAD: Experimental 
Evaluation
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o MS outperforms the Individual detectors 

and the Avg Ens in terms of accuracy

o MS outperforms Avg Ens in terms of 

execution time

o Potential improvement in terms of 

classification

o Potential improvement in terms of ranking 

detectors

Improving
classification Improving

ranking 

MSAD: Experimental 
Evaluation
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Out-of-distribution testing: How well a model handles unfamiliar data?

MSAD: Experimental Evaluation
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Out-of-distribution testing: How well a model handles unfamiliar data?

Training Set Test Set

MSAD: Experimental Evaluation
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Out-of-distribution testing: How well a model handles unfamiliar data?

Training Set

Test Set

MSAD: Experimental Evaluation
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Out-of-distribution testing: How well a model handles unfamiliar data?

  

  

MSAD: Experimental Evaluation
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Out-of-distribution testing: How well a model handles unfamiliar data?

  

➢ Avg Ens is generally safer in terms of accuracy for new 

datasets

MSAD: Experimental Evaluation

AALTD 2024 | 13/09/2024 | 139



Out-of-distribution testing: How well a model handles unfamiliar data?

  

➢ Avg Ens is generally safer in terms of accuracy for new 

datasets

MSAD: Experimental Evaluation

Choose Wisely: 
An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series.
Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas.

GitHub Repo

https://adecimots.streamlit.app/https://helios2.mi.parisdescartes.fr/~th
emisp/publications/pvldb23-msad.pdf

boniolp/MSAD

Paper
(VLDB 2023)

Demo
(ICDE 2024)
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(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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V. Conclusion

Research Directions
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Conclusion: Research Directions

o Ensembling is still better for out-of-distribution 

cases
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Conclusion: Research Directions

How should we ensemble 
detectors?

Can we select one detector per 
time series snippet?

o Ensembling is still better for out-of-distribution 

cases

o Combining Model Selection and Ensembling
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o Ensembling is still better for out-of-distribution 

cases

o Combining Model Selection and Ensembling

o Ensembling has a strong impact on execution 

time

o Trade-off between execution time and 

accuracy in the selection process

Conclusion: Research Directions

How should we ensemble 
detectors?

Can we select one detector per 
time series snippet?
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o Ensembling is still better for out-of-distribution 

cases

o Combining Model Selection and Ensembling

o Ensembling has a strong impact on execution 

time

o Trade-off between execution time and 

accuracy in the selection process

o Adding a new detector require training from 

scratch the pipeline

Conclusion: Research Directions

(c) 
Detector 
selection 
method
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Classification-based

AALTD 2024 | 13/09/2024 | 147



o Ensembling is still better for out-of-distribution 

cases

o Combining Model Selection and Ensembling

o Ensembling has a strong impact on execution 

time

o Trade-off between execution time and 

accuracy in the selection process

o Adding a new detector require training from 

scratch the pipeline

o Improving modularity (regression-based 

model selection)

Conclusion: Research Directions
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