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What is a time series? What is an anomaly?
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Introduction: Time series are Everywhere
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Introduction: with Important Challenges

Large-scale time series database

Energy Production
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Introduction: with Important Challenges

Large-scale time series database

Energy Production

Example of Nuclear production

- 58 nuclear power plants across France
- 2000+ sensors per power plant
- 30 years of data collections

A total of 1.5 PetaBytes

Other source of production

- New sensors with higher acquisition rate
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)
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* Time series T (example : number of taxi passengers in New York City)
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Introduction: Type of anomalies
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—————— ||. Time Series Anomaly Detection

i g e e How does it work?
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Anomaly Detection methods: A taxonomy
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Anomaly Detection methods: A taxonomy
By domains [5] ...

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc. AALTD 2024 | 13/09/2024 | 34
VLDB Endow. 15, 9 (May 2022), 1779-1797.
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{ Time series anomaly detection methods J
|
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
|

N
[ Distance-based ]

Proximity- Clustering-
based based

——————————————————————————
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
|

N
[ Distance-based ]

Proximity- Clustering- Discord-
based based based
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
|

N
[ Distance-based ]

Proximity- Clustering- Discord-
based based based

——————————————————————————
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
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[ Distance-based ] [ Density-based ]
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]

V!
[ Distance-based ] [ Density-based ]

Proximity- Clustering- Discord- Distribution- Graph-
based based based based based
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]

V!
[ Distance-based ] [ Density-based ]

Proximity- Clustering- Discord- Distribution- Graph- Tree-
based based based based based based
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Anomaly Detection methods: A taxonomy

By methods...

{ Time series anomaly detection methods ]

N
[ Distance-based ]

[ Density-based ]
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Anomaly Detection methods: A taxonomy

By methods...

{ Time series anomaly detection methods ]
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]

y )
[ Distance-based ] [ Density-based ] [ Prediction-based ]
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based based based based based based based
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Anomaly Detection methods: A taxonomy
By methods...

{ Time series anomaly detection methods ]
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Anomaly Detection methods: A taxonomy

By methods...

{ Time series anomaly detection methods ]
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Anomaly Detection methods: A taxonomy

By methods...

{ Time series anomaly detection methods ]
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Anomaly Detection Methods

I

T
Distance-based

] ¥

Density-based Prediction-based

—
~ 1 ___]

-

Percentage

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Number of methods proposed per
Second-level categories

~

Prediction

Forecasting

Distribution

~

Density

Discord

Clustering

Proximity

years interval

Distance

based

based

based

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Number of methods proposed per
Second-level categories (cumulative)

. N
; C
Q8 -
D o
L a
. > © [¢o]
Pt = ti g o
Encoding orecasting &
J
\

Y
Density
based

truction-
sed
/
Clustering N o
g ©
L & 2
.é’ o)
Proximity
~
2001 2004 2007 2010 2013 2016 2019 2022
years
GAN

AALTD 2024 | 13/09/2024 | 62

Time



Anomaly Detection Methods
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Time Series Anomaly Detection

Paul Boniol, Qinghua Liu, John Paparrizos, and Themis Palpanas.
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I1l. Series2Graph

A graph-based approach
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Series2Graph: From time series to a graph

Complex network for time
series [8]

Converting the time series to a graph:
- Existing solutions create a node per
point (e.g., Visibility Graph [6,7])

- Do not scale for large time series

I I I I
t t t t t
0 100 200 300 400

S BT B

M. Small et al. Transforming Time seires into Complex Networks, Complex Sciences
(2009)
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Series2Graph: From time series to a graph

Graph G, [9]:
Given a data series T, and an input length £, we build a graph G, (IV', £) for which:
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Series2Graph: From time series to a graph

Graph G, [9]:

Given a data series T, and an input length £, we build a graph G, (IV', £) for which:

N (6)
O

v

Each node is an ensemble of similar

subsequences.
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Series2Graph: From time series to a graph

Graph G, [9]:
Given a data series T, and an input length £, we build a graph G, (IV', £) for which:

N (©) : .
‘o Each node is an ensemble of similar
e N subsequences.
ND Gy . o Each edge is associated to a weight w
P G e ,
000 o\ \ / that corresponds to the number of times
SKS WIels a subsequence move from one node to
OO OO‘Q another.
o ©
| 00 | © 4)
N(é) 7 e% A subsequence T; p (with £ > £;) is a
> pathin Gy,.
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Series2Graph: From time series to a graph

Graph G, [9]:
Given a data series T, and an input length £, we build a graph G, (IV', £) for which:

For a given subsequence T; , and its corresponding path
Py, =< NO NE+D NG+ 5
we define the normality score as follows:
i+6-1 W(N(j), N(J'+1)) deg(NU) — 1)

Norm(P;y) = Z
j=i ¢
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Series2Graph: From time series to a graph

Graph G, [9]:
Given a data series T, and an input length £, we build a graph G, (IV', £) for which:

Norm (Pth(Tj,{u,z)) & Norm (Pth(Ti,€+2))
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Series2Graph: Computation Steps
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Series2Graph: Computation Steps

o 3 components of the Principal Component
Analysis applied on all subsequences of T

(a) Data
series T

|
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!
T
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=
o
~\ | O+
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g
.....
el

min(T) * 1,_;

(b) First step: subsequence embedding
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Series2Graph: Computation Steps

o 3 components of the Principal Component
Analysis applied on all subsequences of T

(a) Data
series T

f I
7500 10000

(b) First step: subsequence embedding

AALTD 2024 | 13/09/2024 | 75



Series2Graph: Computation Steps

o 3 components of the Principal Component o Gaussian density estimation on each
Analysis applied on all subsequences of T

radius (among a fixed number of radius)

(a) Data
series T

I I
7500 10000

(b) First step: subsequence embedding (c) Second step: node creation
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Series2Graph: Computation Steps

o 3 components of the Principal Component o Gaussian density estimation on each 9 Assign each subsequence to a node and set
an edge for each transition between nodes

Analysis applied on all subsequences of T radius (among a fixed number of radius)

(a) Data
series T

l
T T T
0 2500 5000

(b) First step: subsequence embedding (c) Second step: node creation (d) Third step: edge creation
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Series2Graph: An Example

Snippet of SED time series

0 1300 2600 3900 5200 6500
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Series2Graph: An Example

Snippet of SED time series

1300 2600 3900 5200
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Series2Graph: An Example

Pattern following a recurrent
path in the graph

Snippet of SED time series /

1

1

1

1 1
1 1
1 ]
1 1
1 1

1 1 1 1 I 1 I 1
0 1300 2600 3900 5200 6500

Pattern following an unusual
path in the graph
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Series2Graph: F—
An interactive tool . §

Series2Graph

Selected nade
agnoatic anamaly detesstian.

GraphAn: S2G User interface [10]
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Series2Graph:

To conclude

In summary:

- We proposed a user
interface to explore the
resulting graph [10]

- Series2Graph extensions
have been proposed [11,12]

( Exathlon

Haystack
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GraphAn: S2G User interface [10]
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DADS: Distributed version of S2G [12]
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Series2Graph: What next?

Several research directions

- Can the graph structure of
Series2Graph help identify
different time series types?
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Series2Graph: What next?

Time series Database
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Several research directions

- Can the graph structure of
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Series2Graph: What next?

Time series Database Graph embedding per time series
Several research directions /
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Series2Graph: What next?

Several research directions

- Can the graph structure of
Series2Graph help identify
different time series types?

- Is aunique graph meaningful
for a set of time series?

Time series Database

Fvam s

0 20 40 £

m
2.5
T T T T T
0 20 40 5
W
2.5 T T T T T

0 20 40 6

0 20 40 f
W
2.5

I T T T T

0 20 40 60 80
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Series2Graph: What next?

Time series Database Graph embedding of the database
Several research directions / |
0.0

—2.5 ——\’—\/—”A\
- Can the graph structure of 6 20 an ﬁ'ﬂzub

Series2Graph help identify ;
different time series types? e uﬁb
E) 2ID 4ID F-I I
W
- Is a unique graph meaningful s N
E] 2ID 4ID ﬁl I

for a set of time series?
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Series2Graph: What next?

Time series Database Graph embedding of the database
Several research directions / |
0.0

—2.5 ——\’—\/—”A\
- Can the graph structure of 6 20 an ﬁ'ﬂzub

Series2Graph help identify ;
different time series types? e uﬁb
E) 2ID 4ID F-I I
W
- Is a unique graph meaningful s N
E] 2ID 4ID ﬁl I

for a set of time series?
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Series2Graph: What next?

Time series Database Graph embedding of the database
Several research directions / |
0.0

- Can the graph structure of 0 20 40 &

Series2Graph help identify ]
different time series types? e /- ;Eb

0 40 6
6

0 2 I
0
- Is a unique graph meaningful s
0] P

for a set of time series? 0 40 “’@b
—-2.5 T T T T T

0 20 40 6
.0 4— -
—-2.5
I T T T T
0 20 40 60 80
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Series2Graph: What next?

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]

"l @-":‘ 1:‘- w\\ \

Several research directions

- Can the graph structure of
Series2Graph help identify
different time series types?

0 | 140 | 275
- Is aunique graph meaningful
for a set of time series?
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Series2Graph: What next?

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]

Several research directions

SRV “f&
Y A VA
13 :""\. b
) ",'" vh

|

- Can the graph structure of
Series2Graph help identify
different time series types?

140 | 275 0 | 140 | 275

for a set of time series?
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Series2Graph: What next?

Trace dataset (Class 2) [13] Trace dataset (Class 1) [13]

Several research directions WOTATARS

|

- Can the graph structure of
Series2Graph help identify
different time series types?

for a set of time series?
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Series2Graph: What next?

set (Class 2) [13] Trace dataset (Class 1) [13]

TR ——

Trace data

1l )

Several research directions VAT -
- Can the graph structure of
Series2Graph help identify
different time series types?

- Is a unique graph meaningful
for a set of time series?

Clustering?
Classification?
Segmentation?

- Can we use this graph to
perform multiple analytics?
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Series2Graph: What next?

-~

\

Series2Graph: \

Graph-based Subsequence Anomaly Detection in Time Series

Paper

https://www.vldb.org/pvidb
/vol13/p1821-boniol.pdf

Paul Boniol and Themis Palpanas.

O

GitHub Repositories

r A\

TSB-UAD

TheDatumOrg/ HPI-Information- HPI-Information-
TSB-UAD Systems/DADS Systems/ SZGpU




A=
- N =~

V. Automated Solutions

How to pick automatically the best method?
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Automated Solution: Background

Motivation:

No one-size-fits-all model: How can we
automatically identify the best anomaly
detector given a time series?

Detection accuracy (VUS-PR) for 6 anomaly detectors
across different datasets in TSB-UAD [14]

IFarest [ PCA B NORMA I HBOS B POLY

& 0.6

-

u

g 0.4
0.2- I
0.0

Daphnet Occupancy KDD 21 SVDB
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Automated Solution: Taxonomy

(a) Model Selection .
(a.2) Meta-learning-based h

(a) Model Selection:

Selecting the best anomaly detector from a Unlabeled Time Series Model Prediction
predefined candidate model set. E Model
e | selector [LLM2
. N A
- (a.1) Internal Evaluation 5 i N 1! Pretraining
- (a.2) Meta-learning-based oo e ’
: (a.1) Internal Evaluation
Synthetic Anomaly Precision 5
M | 06 Top Selection |

hwﬁ.rﬁlﬂ:«j;f / M. | 0.8 —] M2

Synthetic Anomaly Injection M. |05
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Automated Solution: Taxonomy

(a) Model Selection: emmenees (b) Model Generation |......
d (b.1) Ensembling-based
Selecting the best anomaly detector from a v A B Anomaly Score
predefined candidate model set. A
- (a.1) Internal Evaluation : M | ol Mens
- (a.2) Meta-learning-based (b.2) Pseudo-label-based
Inlier . Qutlier
(b) Model Generation: v ( Unsure Inlier
pieten ¢
Creating an entirely new model for the given D M ‘P
time series based on the candidate mode set I TR - v Pseudo Label
' M. . y —»| My
- (b.1) Ensembling-based Majority Voting Outlier Classifer .-

- (b.2) Pseudo-label-based e T ”
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Automated Solution: Internal Evaluation

[ AutoTSAD ]
I

Definition: Evaluate the effectiveness of v v

a model without any reliance on [ Model Selection ] [ Model Generation ]

external information ; [ . ; [

) i . : : Internal Meta-learning- Ensembling- Pseudo-
stand-alone: Clustering Quality, [ Evaluation ][ based J [ based ][ label-based ]
EM&MV, Synthetic anomaly injection o

§ —
- Collective: Model Centrality, Rank "
Aggregation S 7] ca |emamv
o
% N v JF Y
o | gMC RA  Synthetic
=~ i~

VLDB 2024 | 27/08/2024 | 99



Automated Solution: Internal Evaluation

Train TS

Metrics on Test TS

— - Anomaly
o) A Anomaly Scores

AL

MSE

Rankings

M,

Prediction Error

Trained Models

» M,

M,

Image from [15]: Internal Evaluation workflow.
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Automated Solution: Internal Evaluation

Train TS

Metrics on Test TS

_M Afvcn-.d kav\

Pr edlctlon Error

Rankings

MSE

M,

WUWMAMMMMM

Scale

o M,

M,

M,

Synthetic Anomaly Injection

Trained Models

Anomaly

o M,

M,

Image from [15]: Internal Evaluation workflow.

AALTD 2024 | 13/09/2024 | 101



Automated Solution: Internal Evaluation

Metrics on Test TS

M,

MSE
o M, |
\ M,
Prediction Error
— T§ = TSwioanomaly —— Anomaly

M,
Scale

M

UAMARAMAANAIARAN [ [

: Synthetic Anomaly Injection
Train TS [o]ofo]ofs]1]1fo]of0 ‘ M,
M, Aololofa1|1]a1f[1]ofo]o}— DlSt',tO M,
: NN

o|loJo|of1]2]1]of0
M

Trained Models Model Centrality :

Rankings

Image from [15]: Internal Evaluation workflow.
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Automated Solution: Internal Evaluation

Metrics on Test TS

R et M,
] rT f MSE | M.
; S . il Best Model
Prediction Error |
—_—T = TS vu‘omom.?y — Ancenaly _\,l* :\11
Scale v M,
Anomaly ;
VMLV
1 mir : f:d (0°,0,)
Synthetic Anomaly Injection cex M
Train TS ‘ 1 oflofof1]1]2]o]ofo Dist: to M,
olo|1|1f1]1]o|ofo}—» e M,
ojojojJoj1|jr|1r]|O]O NN 1\1
Trained Models Model Centrality :

Rankings

Image from [15]: Internal Evaluation workflow.
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Definition: Integrate predictions from
the candidate model set

Automated Solution: Ensembling-based

Full: OE

Selective: HITS, IOE

2010

2023 2020 2015

Time

[ AutoTSAD ]

v

[ Model Selection ]

v

[ Model Generation J

Internal Meta-learning-
Evaluation based

based

label-based

Ensemhling-J[ Pseudo- J

cQ

C

RA

EMEMY

Synthetic

OE

HITS I10E

AALTD 2024 | 13/09/2024 | 104



Automated Solution: Ensembling-based

Definition: Integrate predictions from

the candidate model set M, A aan ) Lonaa
Full: OE e e @" MEI‘IS I f’”v—\,'—v-k/\\/_\
Selective: HITS, IOE Mo | Aggregated
Individual Anomaly Score

Anomaly Score
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Automated Solution: Pseudo-label-based

[ AutoTSAD ]
I

Definition: Generate pseudo-labels to v v
transform the unsupervised [ Model Selection ] [ Model Generation ]
anomaly detection problem into a
supervised framework . : - * *
[ Internal ][ Meta-learning- J [Ensembling— ][ Pseudo- ]
Evaluation based based label-based
- AutoOD: Augment, Clean o
- Booster: UADB S
3 OE
~ cQ |EM&MV
o
N —
o~ v Jr v ¥
@ _| gMC RA  Synthetic v v Augmentl |
S | E HITS I10E Clean UADB
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Automated Solution: Pseudo-label-based

Inlier

M,

_\

M:

M.

.J

Detection Results

Pseudo-label-based Method Framework [16].

l (- Outlier

?_

(— Unsure Inlier

Majority Voting

—>

Pseudo
Label

M Label

Outlier
Classifer
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Automated Solution: Meta-learning-based

[ AutoTSAD ]
I

Definition: Using insights from historical v v

labeled datasets to select the best [ Model Selection ] [ Model Generation ]

model for new data

T Internal Meta-learning- Ensembling- Pseudo-
Classification: Auto-Selector, MSAD [ Evaluation ] based [ based ][ I ey ]
o
. =~ _]

- Regression: RG, UReg, Cfact S RG| |isac

- Nearest Neighbor: kNN Q ca | emamyv
o L J

- Other Optimization: ISAC, MetaOD S 1 | | | i |
m ] E MC RA S?chE‘ticu SE|EﬂDr  J Y ¥ Augment L 4 ¥
< = MSAD UReg CFact HITS 10E Clean UADB
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Automated Solution: Meta-learning-based

4 N

How can we do “model selection” for time series anomaly detection?

s it better than simply ensembling detectors?
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V. MSAD

Model Selection for Anomaly Detection
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MSAD: Ensembling versus Model Selection

Ensembling is proposed as a mitigation strategy to the
previous limitation [17]

Set of
Detectors

Time Series
b 2500 5600
l Run all detectors
[ Dy D, D, Dy,

|

l Average all anomaly scores

Y TV

0

2500

5000

Anomaly Score
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MSAD: Ensembling versus Model Selection

Ensembling is proposed as a mitigation strategy to the
previous limitation [17]
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MSAD: Ensembling versus Model Selection

Ensembling is proposed as a mitigation strategy to the
previous limitation [17]

... But is problematic in terms of execution time

0.81
cx 0.6
Q-
p) l
) 0.4
>

0.2

0.0
3) 3
> 10
2 2]
£ 5 10
s
(- 10%
S8
6_10
2 10
O
()

2 |

T.L T (|
T T T -
,,,,,,,,,,,,,,,,, o s I | S I B
- .
— — I_I_I 1 g p— p— —T 1 - 1 J_:
1 QR Oy Sk & aR -
SF O FPF STV FE SR
C LR < N <
O(jo Q \,% X & «o& éo‘ \?gq
I e T T
Bl i
T 1 ]
l J J __________ | ; ?i
' $ & & <O R '\r'\}'®vl~\l o
CF S SR LI NFFE
S NV O SRS e & o R
v RSRS \<<O< RO ]

AALTD 2024 | 13/09/2024 | 113



MSAD: Ensembling versus Model Selection

.. . Time Series
Ensembling is proposed as a mitigation strategy to the

previous limitation [17]

: . L 0 2500 5000
... But is problematic in terms of execution time

l’ Choose the best detector

Model Selection (MS) is a solution to reduce the
Set of D D D D
execution time Detectors 0 1 2 n

0 2500 5000
Anomaly Score
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MSAD: Ensembling versus Model Selection

Ensembling is proposed as a mitigation strategy to the
previous limitation [17]

... But is problematic in terms of execution time

Model Selection (MS) is a solution to reduce the
execution time

The best possible achievable performances (Oracle) is
motivating
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MSAD: Ensembling versus Model Selection

4 ) Di | D2 | D3 D1 | D2 | D3
wn_) D TS1 | 05| 0.7 | 0.9 TS; | 0 | 0 | 1
WM | [ 22 ] |— [75: | 05 | 0a [0z rs, 0 0| 1
AM\MM fiA o TS3 | 05 | 0.8 | 0.6 TS3 | 0 | 1 | 0
T\ Y
Time S'er.ies Candidate Performance o
For Training Model Set Matrix )
Y

Time series classification methods could be a solution
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MSAD: Classification for Model Selection

Research Questions (RQs)

1. Whatis the best approach:
1. Individual Detectors
2. Average Ensembling (Avg Ens)
3. Model Selection (MS)

2. What is the best input: Time Series Features OR Raw Values?

3. What-if model selection is tested on completely new datasets?
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MSAD: Experimental Pipeline

(a) Time series T

Step 1: Acquiring Labeled
Time Series

We use the TSB-UAD benchmark [14],
on which we know in advance which

detector is the best for each time series.
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MSAD: Experimental Pipeline

(a) Time series T

1 1
1 1
1 1
1 1
........ J I
1 1
1
1
T; e j T Tip

.............. " MU\«J\MJUUW

N %
(b) Set of subsequences of length ¢

Step 2: Segmentation

We segment the time series into equal

length subsequences.

Each subsequence is assigned to the

same label (best detector)
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MSAD: Experimental Pipeline

(a) Time series T

........ | i
EL Tl{’ . jt Tk,{’ . Tl{)‘:
Step 3: Prediction
> n n ﬂ A " n “ W > S P(Ti {)) =D, We train a time series classification
________ " ﬂ ﬂ.n [ ﬂ ﬂ > (c) —> P(Tj,{,) =D, method to predict which detector is the

D

LI MUUUUUUUUU\ —> Etecj(or —> P(Tk,{)) =D, best (using the labels from TSB-UAD).
| selection |

o * | method |° ’

O > — P(Tl,f) = DO

N %
(b) Set of subsequences of length ¢

\ 4
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MSAD: Experimental Pipeline

(a) Time series T

LoD DA AN An N0

J Ti | o e ettt Model selection with Time series Classification
I e ) ' |
Feature-
Raw-based
based

HE v I
Deep learning based
. L
T Hie 1Ll g Det(:itor —> P(T,) =Dy Transformer-
.......... WMMJWM —_> . —> P(Tk,f) = DZ based
| selection | L
= : | method | ¢ E ConvNet oy
. > > — P(Tl,‘f) f— DO ResNet Rocket

N ) Inception

(b) Set of subsequences of Iem
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MSAD: Experimental Pipeline

(a) Time series T

........ ; i

EL Tie o Ly Tl T

Step 4: Selection
> n n ﬂ A n " “ W > S P(Ti {]) — Dz\ _ Do We pick the most selected detector for
EHH ! o
FH " n n.ﬂ " n ﬂ > (c) —> P(Tj,{)) =D, g D, all the subsequences of a time series.
- MUUUUUUUUU\ | betector L, p(r, ) =p, |2 L D,
| selection | _ =< :
w * | method |° : = '
S S — oQ
> > —> P(T,) Do D,

N %
(b) Set of subsequences of length ¢
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MSAD: Experimental Pipeline

(a) Time series T

1 1
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1
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(e) Y <
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| selection
o * | method
O > >
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\

—> P(Tl,f) = Doj

N %
(b) Set of subsequences of length ¢

Sunon Ayiole (p)

\ 4

L o oo o oo o

Step 5: Anomaly Score
Computation

We finally compute the anomaly score

using the selected detector.
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MSAD: Experimental Evaluation

We conduct our experimental evaluation on the TSB-UAD benchmark :
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MSAD: Experimental Evaluation

We conduct our experimental evaluation on the TSB-UAD benchmark :

16 time series classification methods:

Model selection with Time series Classification

i

Raw-based

v

MLP

SVC Deep learning based

KNN

¥

Transformer-
based

QDA
Bayes
AdaBoost
DecisionTree

RandomForest

ConvNet
ResNet
Inception

_____
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MSAD: Experimental Evaluation

We conduct our experimental evaluation on the TSB-UAD benchmark :

16 time series classification methods:

With 8 segmentation window lengths:

Model selection with Time series Classification

i

i

Feature-
based

Raw-based

|
v

Deep learning based

¥

Transformer-
based

Random split (70/30) of TSB-UAD benchmark between train and test

_____

ConvNet v
ResNet Rocket
Inception

16

Ll

m

32
64

AL

128
256
512
768
1024

(i
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MSAD: Experimental Evaluation

o The window length influence is different based on the type of methods
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MSAD: Experimental Evaluation

o MS outperforms the Individual detectors
and the Avg Ens in terms of accuracy

o MS outperforms Avg Ens in terms of
execution time

VUS-PR

log-scale

Detection time (sec):
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MSAD: Experimental
Evaluation

o MS outperforms the Individual detectors
and the Avg Ens in terms of accuracy

o MS outperforms Avg Ens in terms of
execution time

0.5

0.4

Anomaly Detection VUS-PR

(a) Classification vs anomaly detection for all dataset
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(a) Classification vs anomaly detection for all dataset

MSAD: Experimental
Improving
classification
o MS outperforms the Individual detectors & [ e ,
o " Models within this
and the Avg Ens in terms of accuracy 3 R gassti Y “ rectangle outperform
>0.3{° . b the best Anomaly
= Detector (AD)
o MS outperforms Avg Ens in terms of I
)
execution time el i
20.2
£
e
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S o e
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S e Convolutional-based
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(a) Classification vs anomaly detection for all dataset

MSAD: Experimental
g ! ) Improving
0.4 Uppe‘afg‘_‘__' Improving If classification
T ranking 1 M =7
o MS outperforms the Individual detectors o
: | ‘ " Models within this
and the Avg Ens in terms of accuracy 3 el and " rectangle outperform
> 034 ° the best Anomaly
= Detector (AD)
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)
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data?
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data?

OPPORTUNITY IOPS SVDB Daphnet
Occupancy ECG GHL SensorScope

M

A4

pr e

LA AWAN
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data?

OPPORTUNITY IOPS SVDB Daphnet
Occupancy ECG GHL SensorScope
\ J\ J
Y Y
Training Set Test Set
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data?

J

Test Set
A A
OPPORTUNITY IOPS SVDB Daphnet
Occupancy ECG GHL SensorScope
\
Y
Training Set
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data?

Trained on all but Occupancy Trained on all but SVDB Trained on all but MITDB
Tested on Occupancy Tested on SVDB Tested on MITDB
0.8 1
0.6 1
0.4 1
0.2 1
0.0
Trained on all but GHL Trained on all but KDD21 Trained on all but YAHOO
Tested on GHL Tested on KDD21 Tested on YAHOO

Oracle — - — - Worst AD on test — — — Best AD on train
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data? ;) ayq vus-pr for all dataset
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D
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MSAD: Experimental Evaluation

Out-of-distribution testing: How well a model handles unfamiliar data? ;) ayq vus-pr for all dataset
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Tested on Occupancy Tested on SVDB Tested on MITDB
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» Avg Ens is generally safer in terms of accuracy for new
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MSAD: Experimental Evaluation

/ Choose Wisely: \

An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series.
Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas.

R ﬁﬁ l ﬁ:h& r- o
VLDB2023 I i B
Paper Demo :
(VLDB 2023) (ICDE 2024) GitHub Repo

[=];

[=]

https://helios2.mi.parisdescartes.fr/~th https://adecimots.streamlit.app/ boniolp/MSAD
Qmisp/publications/pvldb23-msad.pdf
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V. Conclusion

Research Directions
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Conclusion: Research Directions

(a) Avg VUS-PR for all dataset
o Ensembling is still better for out-of-distribution 1.0

cases '
0.81

VUS - PR

0.0
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Conclusion: Research Directions

o Ensembling is still better for out-of-distribution 0.8
0.6
cases 504
o Combining Model Selection and Ensembling §0'2 i ii i
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£ 103
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Conclusion: Research Directions

o Ensembling is still better for out-of-distribution How should we ensemble
cases 61 detectors?

o Combining Model Selection and Ensembling e

time series snippet?

Detection Time (sec)
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Conclusion: Research Directions

o Ensembling is still better for out-of-distribution How should we ensemble
detectors?

cases

o Combining Model Selection and Ensembling e

time series snippet?

o Ensembling has a strong impact on execution

time
o Trade-off between execution time and

accuracy in the selection process

Detection Time (sec)
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Conclusion: Research Directions

. . Classification-based
o Ensembling is still better for out-of-distribution

cases R roneee- reeme omm e :
.« . . . 1 | I :
o Combining Model Selection and Ensembling I?MWWM ML -
I=| i,f| B4 k4 . l,£’Jl : : I
Fe==== === o ] 7500 10000 1
. . . —> P(T;,) = Dz\ Dy :
o Ensembling has a strong impact on execution |5 p(1,) = D, >l
. (c) I
time pe S DR I X Py
. . method
o Trade-off between execution time and R E : :
_ , > p(7,,) = D, oy
accuracy in the selection process

D W <
o Adding a new detector require training from o0 2500 " 5000 7500 10000

scratch the pipeline
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Conclusion: Research Directions

L o , Regression-based
o Ensembling is still better for out-of-distribution

cases

o Combining Model Selection and Ensembling 'WWWWWWWWWW—

[ D, estimation
model

. . L I
o Ensembling has a strong impact on execution ! D, estimation |
|

P(T,;) = 4Dy Dy

P(T;z) = Acc(Dy)

—>

—>
model
> S D, estimation > p(T,,) = 4cDy) >
—>

time

uINgay (p)
&
1

model

o Trade-off between execution time and

| D, estimation
model

+
o Adding a new detector require training from MJWMW )

scratch the pipeline 0 2500 5000 7500 10000

P(Tyz) = Acc(Dy) Dy,

accuracy in the selection process

o Improving modularity (regression-based
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