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Abstract. Falls pose a significant health risk, particularly for older peo-
ple and those with specific medical conditions. Therefore, timely fall de-
tection is crucial for preventing fall-related complications. Existing fall
detection methods often have high false alarm or false negative rates,
and many rely on handcrafted features. Additionally, most approaches
are evaluated using simulated falls, leading to performance degradation
in real-world scenarios. This paper explores a new fall detection approach
leveraging real-world fall data and state-of-the-art time series techniques.
The proposed method eliminates the need for manual feature engineering
and has efficient runtime. Our approach achieves high accuracy, with false
alarms and false negatives each as few as one in three days on FARSEE-
ING, a large dataset of real-world falls (mean F1 score: 90.7%). We also
outperform existing methods on simulated falls datasets, FallAllD and
SisFall. Furthermore, we investigate the performance of models trained
on simulated data and tested on real-world data. This research presents
a real-time fall detection framework with potential for real-world imple-
mentation.

Keywords: Fall detection · Time series · Real-world falls.

1 Introduction

A fall is "an event which results in a person coming to rest inadvertently on
the ground, floor, or other lower level". Globally, falls cause more than 684,000
deaths and about 172 million disabilities annually [53]. Most falls go unreported,
especially those without injuries [41]. However, older adults [51] and people with
specific medical conditions are considered high-risk groups (HRG) because they
fall more frequently [32] and may be unable to alert anyone if they sustain
fall-related injuries. Hence, falls among HRGs can significantly affect their liveli-
hood, instilling a fear of falling, threatening their independence, and posing life-
threatening risks. The aging global population increases the strain on healthcare
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systems from falls, due to the need for hospitalisation, medical care, and potential
surgery [4]. Consequently, extensive research has been dedicated to automated
fall detection for timely intervention to prevent fall-related complications, such
as permanent disability or mortality.

Fall detection typically involves data capture, preprocessing, feature extrac-
tion, and classification [25]. The data capture stage records participants’ daily
activities to identify both normal activities of daily living (ADLs) and falls. Fall
data can be collected using vision-based techniques, ambient devices, and wear-
able sensors. Recent vision-based techniques leverage human pose estimation for
fall detection using body geometry features in videos [2]. However, vision-based
techniques face challenges like privacy concerns and high storage requirements.
Ambient devices, while suitable for private areas like bathrooms, are expensive
and may have limited coverage [25]. Wearable devices offer a practical solution
for capturing real-world falls since they are relatively low-cost and can be carried
for extended periods [20] in both indoor and outdoor settings.

Fall detection algorithms analyse motion data to distinguish between falls
and ADLs using threshold-based, machine learning based, or deep learning based
approaches [25]. Threshold-based methods [21, 48] use cut-off values set on the
sensor signals to distinguish between falls and ADLs. However, these techniques
commonly have high false alarm rates [43], which could lead to "false alarm
fatigue" [33]. On the other hand, machine learning-based methods such as [22,47]
use conventional classifiers with manually crafted features, yet, modelling the
diverse factors that lead to falls is challenging. These factors can be internal
(age, impaired mobility, disease), external (lighting, obstacles), or situational
(activity leading to the fall). Consequently, fall feature extraction is complex
and often requires a multidisciplinary approach [51].

Recently, deep learning approaches [6,23,26,30,37,54] have been used for fall
detection, removing the need for manual feature extraction. While these methods
show promising results, most are trained and tested on simulated data due to
the scarcity of real fall data, raising concerns about their applicability in real-
world settings [49]. Furthermore, deep learning models require large amounts of
representative data, long training times, with a large number of parameters [15].
Hybrid methods [14, 26, 52] combining thresholds, machine learning, and deep
learning have been proposed to improve accuracy, but often at the expense of
simplicity and efficiency.

A major limitation of most fall detection approaches is their lack of trans-
ferability to real-world scenarios. Studies [39, 46] have shown significant perfor-
mance drops when models trained on simulated falls are tested on real-world
falls. Several factors involved in real falls are difficult to simulate accurately.
Hence, simulating falls involves assumptions that cannot be determined in ad-
vance in real-world falls. For instance, while real-world falls may lead to injuries,
simulated falls use controlled fall heights to prevent injuries, resulting in lower
impact velocities [3]. Additionally, for ethical reasons, simulated datasets are
typically created with healthy young adults whose postural control differs from
that of the elderly.



Accurate and Efficient Real-World Fall Detection 3

In this paper, we present a simple, yet efficient approach to fall detection
using state-of-the-art time series techniques, trained and tested on real-world
falls. Our main contributions are:

1. We perform realistic segmentation of falls and activities of daily living in a
manner that simulates real-time signals and considers the context of falls.

2. We perform fall detection using both classic tabular machine learning meth-
ods and recent state-of-the-art time series classification algorithms.

3. We evaluate the transferability of the proposed algorithms from simulated
datasets to real-world falls.

Our approach requires no feature engineering and has very short inference
times. We evaluate it on the FARSEEING dataset [20], a large real-world dataset
with 92 fallers (mean age 76.1±12.6 years) and 208 verified falls captured using
inertial sensors. We also evaluate our approach on the simulated FallAllD [44] and
SisFall [50] datasets, which use waist-worn sensors. For all datasets, we simulate
a real-time scenario by using a fixed overlapping sliding window segmentation
technique to extract falls and ADLs, followed by fall detection using state-of-
the-art time series classifiers. Our methods obtain cross-validated F1 scores up
to 90.7% on FARSEEING and 97.2% on the simulated datasets. We also identify
important segments in motion signals for fall detection using post-hoc explana-
tion techniques. Our work proposes a realistic, accurate, and efficient framework
for timely fall detection with great potential for real-world implementation. We
achieve low daily false alarm and false negative rates of 0.29 and 0.31 respec-
tively on real-world falls (FARSEEING), each equating to about 1 error in every
3 days. To support this paper, we have made all our code available5.

The rest of this paper is organised as follows. Section 2 reviews related work
on fall detection using time series and real-world falls. In Section 3, we discuss the
datasets and preprocessing steps, including segmentation. Details and results of
our experiments are given in Section 4, and Section 5 offers concluding remarks.

2 Related Work

In this section, we discuss recent time series approaches to fall detection, as well
as fall detection algorithms evaluated on real-world falls.

2.1 Fall Detection Using Time Series Approaches

Although signals obtained from inertial sensors can be easily modelled as time
series to preserve the temporal information and context of falls, most fall detec-
tion approaches have traditionally relied on manual feature extraction or deep
representation learning. However, a few recent approaches have modelled fall
detection as a time series classification problem.

Recently, a recurrent neural network approach was proposed for fall detection,
achieving recall of up to 96% on the SisFall dataset. Similarly, a long-short-term
5 https://github.com/mlgig/ts_fall_detection

https://github.com/mlgig/ts_fall_detection
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memory (LSTM) model trained and tested on the SisFall dataset achieved 96.4%
recall. Another approach, the Temporal Convolutional Network and Temporal
Attention Network (TCN-TAM) [36], extracted features from motion signals as
time series and obtained an 88% recall on the FallAllD dataset. Likewise, the
DeepFall model [18], a deep residual network, achieved an F1 score of 92.79% on
the FallAllD dataset. However, despite modelling fall signals as time series, these
techniques used complex deep learning models for representation learning and
classification. Furthermore, training and testing were conducted on simulated
datasets, with no analysis of their transferability to real-world data.

2.2 Real-World Fall Detection

Falls are accidental and diverse, making them rare compared to activities of daily
living [19]. Consequently, most fall detection research relies on simulated falls,
which, despite their limitations [49], are useful for developing detection solutions.
The scarcity of real-world fall datasets means that few studies have trained and
evaluated techniques on actual fall data.

In a recent study [34], an ensemble of random forests was trained on a clinical
dataset of 25 multiple sclerosis patients monitored over 2 months in free-living
conditions, although the dataset is not publicly available for analysis. Another
study [39] trained several machine learning models on the FARSEEING dataset
using five manually extracted features, achieving an F1 score of 65%. A more
recent study [42] achieved an F1 score of 91% in fall detection using a Residual
Network, though the authors used only a subset (22 subjects) of FARSEEING.

3 Materials and Methods

3.1 Datasets

We evaluate our fall detection techniques using the FARSEEING dataset [20], a
large collection of real-world falls. For completeness, we also evaluate our tech-
niques on two simulated fall datasets, FallAllD [44] and SisFall [50]. SisFall uses
only waist-worn sensors because signals obtained from sensors placed around the
centre of mass are preferred for fall detection [38]. Therefore, we use accelerom-
eter signals from sensors worn around the centre of mass across all datasets for
consistency. Fig. 1 shows sample acceleration signals from each dataset. Table 1
provides summary statistics for all the datasets after preprocessing.

FARSEEING. The FARSEEING dataset [20] comprises 208 verified falls from
92 individuals (mean age 76.1 ± 12.6 years) captured using tri-axial inertial
sensors. Each fall includes 20 minutes of data centered around the impact event,
with 10 minutes before and after the fall. The fall signals were captured across
different studies, and hence, have various sensor configurations: 72 falls with
accelerometer signals only, 15 with accelerometer and gyroscope signals, and 121
with accelerometer, gyroscope, and magnetometer signals. Sensors were placed
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Fig. 1. Accelerometer signals from the FARSEEING, FallAllD, and SisFall datasets
with the impact sample highlighted (from 1 second before to one second after the fall).
The datasets have different sensor orientations; we aggregate the channels using the
magnitude of acceleration, so the data becomes invariant to sensor orientation.

on the fifth lumbar (L5) for 150 falls and on the thigh for 58 falls. Sampling rates
were 100Hz for 152 falls and 20Hz for 56 falls. In this study, we use accelerometer
signals from 41 participants with L5 sensors, upsampling 20Hz signals to 100Hz
using Fast Fourier Transform resampling [13] to minimise distortion. Some of the
accelerometers had a range of ±2g, while others had a range of ±6g. Therefore,
we clipped all the signals to ±2g for uniformity.

FallAllD. The FallAllD dataset [44] is an open-source simulated falls dataset.
It contains 35 types of falls and 44 types of activities of daily living (ADLs)
performed by 15 participants. The dataset comprises 26,420 files collected from
tri-axial accelerometers, gyroscopes, magnetometers, and barometers worn on
the waist, wrist, and neck. The accelerometers have a range of ±8g and sampling
frequency of 238Hz. In this study, we use only the accelerometer signals collected
from 14 participants using waist-worn sensors.

SisFall. The SisFall dataset [50] is an open-source simulated falls dataset with
simulated falls and ADLs performed by 38 healthy participants, including 23
young adults and 15 older adults. Accelerometer and gyroscope signals were
collected using a waist-worn sensor sampling at 200Hz.
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3.2 Data Preprocessing

Transformation. To account for varying sensor orientations across datasets, we
first aggregated the multivariate acceleration signals into orientation-invariant
univariate acceleration magnitude signals: M =

√
A2

x +A2
y +A2

z, where Ax, Ay,
and Az are the x, y, and z accelerations. We then performed segmentation to
obtain samples, followed by standardisation across all samples to achieve zero
mean and unit variance for modelling.

Segmentation. Research on falls often focuses on the immediate event, whereas
the lived experience of older adults and healthcare providers considers the sur-
rounding factors before and after the fall [49]. To capture the full context of
falls and not just the "impact" event, we use a three-phase modification of the
multi-phase fall model [1] with a falling phase, an impact phase, and a post-fall
phase. As shown in Fig. 2, we define [t0, t1) as the falling phase, [t1, t2) as the
impact phase, and [t2, t3), the post-fall phase (which combines the resting and
recovery phases of the original model). Each sample is t3 − t0 seconds long.

Fig. 2. Multiphase fall model on a FARSEEING fall sample.

As proposed in [39], we set the falling phase and impact phase to 1 second
each. Since fall samples in SisFall are only 15 seconds long, we set a post-fall
phase of 5 seconds, yielding a total sample window size of 7 seconds. However,
using FARSEEING, we empirically demonstrate that longer post-fall phases do
not always improve performance (see Appendix B.2). To simulate real-time sig-
nals, we use a fixed overlapping sliding window technique to segment samples
from the accelerometer signals with a step size of 1 second (≈ 86% overlap).

Fall Signals Segmentation. Each fall sample in FARSEEING has 20 minutes of
accelerometer data with 10 minutes before t1 and 10 minutes after t1. Hence, for
FARSEEING, we first separated the portion [t0, t3) of the signal that includes
the reported fall by setting t0 at 1 second before the impact event. We then
discarded the remainder of the post-fall signal, since the subject is likely to walk



Accurate and Efficient Real-World Fall Detection 7

carefully after a fall [39] and the signal may not be characteristic of ADLs. ADL
samples were then extracted from the 9-minute signal before the impact event.

In FallAllD and SisFall, falls and ADL were recorded as separate signals.
Each FallAllD signal is 20 seconds long with the impact event centered (at the
10th second) in the fall trial. However, SisFall fall signals are 15 seconds long
with the impact event at arbitrary locations in the signal. For all datasets, we
extracted one fall sample from each fall signal, while we used the windowing
technique to extract several ADL samples from ADL signals.

Segmentation of Activities of Daily Living. Following the pattern of the multi-
phase model, each ADL signal has a duration of t3 − t0 seconds. Using the
phase [t1, t2) corresponding to the impact phase as the main search window, we
scan from the beginning of the sample with a step size of 1 second. For each
step, we select the current [t0, t3) as a sample if the maximum magnitude of the
acceleration within the impact sample is above a threshold τ . Similar works have
selected τ as high as 1.9g [5], but we set τ at a lower value of 1.4g to account
for less energetic ADLs among older adults in the datasets.

4 Experiments

This section details baseline experiments using tabular classification models (Sec-
tion 4.2), fall detection with time series classifiers (Section 4.3), cross-dataset
evaluation (Section 4.4), and comparisons with related works (Section 4.5).
Model explanation results are only preliminary and are presented in Appendix A.2.
Detailed experimental results are in Appendix C.

All experiments were conducted using Python 3.11.9 on a Linux server with
Ubuntu 22.04.3 LTS (1.5TB RAM, 24GB NVIDIA GeForce RTX 4090 GPU).
We used time series classifiers from aeon [31] v0.8.1 and tabular classifiers from
scikit-learn [40] v1.4.2.

4.1 Evaluation Approach

Due to the small number of falls compared to ADLs (Table 1), we use a five-fold-
subject cross-validation approach for evaluation. First, we shuffle and divide all
subjects into five groups. Then, we use samples from the subjects in each group
for testing while training on the remaining groups. We report metrics as mean
± standard deviation across all folds. We focus on AUC, Precision, Recall, and
F1 score for falls. Although adjusting classifier thresholds can increase recall
by minimising undetected falls, it also reduces precision, leading to more false
alarms. Therefore, we prioritise the F1 score to balance recall and precision.

4.2 Baseline Experiments With Tabular Models

As recommended in [11], we first perform baseline experiments using tabu-
lar models. We use the scikit-learn implementations of five tabular classifiers,
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Table 1. Dataset sizes after preprocessing and segmentation

Dataset Subjects ADL Samples Falls Samples Total Falls:ADL Ratio
FARSEEING 41 1064 145 1209 0.14
FallAllD 14 1279 466 1745 0.36
SisFall 38 10843 1200 12043 0.11

namely, ExtraTrees with 150 estimators, K-Nearest Neighbours (KNN, k =
5), LogisticRegressionCV (CV = 5), RandomForest with 150 estimators, and
RidgeCV (CV = 5). We perform no feature extraction but model each sample
as a 1D vector v ∈ RL, where L = w×f , w is the window size in seconds, and f is
the frequency of data capture for the target dataset. Therefore, for each dataset,
we obtain {X ∈ RN×L, y ∈ {0, 1}N}, where X are the sample signals, y are
the targets, N is the number of samples, and L is the total length of each sam-
ple. We evaluate each dataset on all the tabular models using a five-fold-subject
cross-validation. Fig. 3 shows boxplots of F1 scores across the five folds for each
tabular model (detailed results in Tables A3, A4, and A5 in Appendix C).

Table 2. Tabular Models Average Cross-validation Results

Dataset Model AUC Precision (%) Recall (%) F1 Score (%)

FARSEEING

ExtraTrees 99.2 ± 0.8 91.3 ± 11.3 82.6 ± 11.9 85.9 ± 8.7
KNN 79.2 ± 8.8 77.1 ± 26.4 37.9 ± 13.3 47.5 ± 11.3
LogisticCV 94.0 ± 3.7 87.2 ± 10.7 76.9 ± 14.4 81.3 ± 11.0
RandomForest 99.0 ± 1.0 88.6 ± 12.0 83.4 ± 10.5 85.0 ± 6.7
RidgeCV 96.0 ± 2.9 98.8 ± 2.8 67.5 ± 10.3 79.7 ± 7.5

FallAllD

ExtraTrees 98.8 ± 0.8 90.1 ± 7.7 92.9 ± 4.9 91.2 ± 4.0
KNN 81.4 ± 7.5 84.5 ± 13.8 31.7 ± 12.0 44.6 ± 13.6
LogisticCV 98.2 ± 0.8 89.2 ± 11.2 87.8 ± 11.4 87.6 ± 6.9
RandomForest 98.6 ± 0.6 89.2 ± 8.9 89.7 ± 7.8 89.0 ± 5.2
RidgeCV 98.4 ± 0.9 91.6 ± 8.6 82.9 ± 13.5 86.1 ± 7.7

SisFall

ExtraTrees 98.8 ± 0.8 91.1 ± 5.5 72.6 ± 8.5 80.4 ± 4.0
KNN 95.2 ± 2.6 85.0 ± 4.9 77.4 ± 7.5 80.9 ± 5.4
LogisticCV 75.4 ± 4.5 53.5 ± 27.1 12.3 ± 7.5 17.6 ± 10.3
RandomForest 97.6 ± 1.1 91.2 ± 4.5 67.9 ± 8.0 77.5 ± 4.7
RidgeCV 73.8 ± 3.5 94.3 ± 12.8 1.2 ± 1.1 2.4 ± 2.2

The best performing model and best F1 score for each dataset is shown in bold.

Table 2 shows the mean cross-validation results achieved by tabular models
on all datasets. ExtraTrees achieves the best result overall on FARSEEING and
FallAllD, while KNN achieves the best performance on SisFall. Overall, the
SisFall dataset is the most challenging for the tabular classifiers. This may be a
result of the arbitrary positioning of the impact event in the SisFall fall samples.

4.3 Experiments With Time Series Models

We use a univariate time series classification approach, aggregating the multivari-
ate x, y, z channels into univariate magnitude. Initial experiments showed that
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Table 3. Time Series Models Average Cross-validation Results

Dataset Model AUC Precision (%) Recall (%) F1 Score (%)

FARSEEING

Catch22 96.6 ± 1.8 79.2 ± 10.4 72.0 ± 10.5 74.8 ± 7.3
Hydra 94.0 ± 5.2 93.2 ± 3.9 89.1 ± 11.5 90.7 ± 6.5
M.R.Hydra 93.0 ± 5.0 91.3 ± 5.8 87.4 ± 10.5 88.9 ± 5.9
QUANT 99.4 ± 0.9 89.8 ± 6.8 88.7 ± 11.0 88.8 ± 5.9
Rocket 90.4 ± 4.04 88.1 ± 7.26 82.5 ± 8.5 84.8 ± 5.1

FallAllD

Catch22 99.0 ± 1.0 92.2 ± 6.5 95.1 ± 5.2 93.5 ± 5.0
Hydra 97.0 ± 3.0 95.4 ± 5.8 95.7 ± 4.2 95.5 ± 4.4
M.R.Hydra 98.4 ± 0.6 95.9 ± 4.2 98.7 ± 1.8 97.2 ± 1.9
QUANT 100.0 ± 0.0 95.9 ± 4.1 97.2 ± 2.5 96.5 ± 1.9
Rocket 96.4 ± 2.2 96.2 ± 3.5 94.2 ± 4.6 95.1 ± 3.0

SisFall

Catch22 99.4 ± 0.6 94.5 ± 6.4 89.7 ± 6.0 91.9 ± 4.3
Hydra 97.0 ± 2.1 96.7 ± 1.8 94.4 ± 4.9 95.5 ± 2.7
M.R.Hydra 97.4 ± 2.4 99.2 ± 1.4 94.4 ± 4.8 96.7 ± 2.9
QUANT 99.8 ± 0.5 95.6 ± 5.0 93.1 ± 4.1 94.3 ± 4.3
Rocket 96.0 ± 2.8 95.5 ± 5.3 92.3 ± 6.2 93.7 ± 3.6

M.R.Hydra: MultiRocketHydra. The best-performing model and best F1 score for
each dataset is shown in bold.

using the univariate magnitude time series leads to significantly better results
than using the x, y, z channels as a multivariate time series (see Appendix B.1).
After reshaping each dataset as {X ∈ RN×1×L, y ∈ {0, 1}N}, where X, y, N , and
L are as previously defined, we performed fall detection using the aeon toolkit im-
plementations of five state-of-the-art time series classifiers: Hydra [9], Rocket [8],
MultiRocketHydra, Catch22 [27], and Quant [10]. Initial single train/test split ex-
periments with deep learning models (InceptionTime [17] and FCN [56]) showed
longer training times and poorer performance compared to other models. For ex-
ample, FCN achieved an F1 score of just 14%, taking 252 seconds, while Hydra
achieved an F1 score of 90% in just 49 seconds. InceptionTime’s training was
stopped after over 3 hours, which we deemed too long for real-time performance.
Prioritising accuracy, efficiency, and real-time performance, we excluded FCN
and InceptionTime from cross-validation experiments.

Table 3 shows that MultiRocketHydra achieves the best results on FallAllD
and SisFall, while Hydra performs best on FARSEEING. Quant also performs
well and is fastest among the compared methods. Fig. 5 demonstrates that time
series models exhibit better and more consistent performance across individual
datasets, with F1 scores ranging from 68% - 100% (Fig. 4). This superior per-
formance is expected, as these time series models are robust to variations in the
positioning of the impact phase. Unlike tabular models, which treat each time
step as an individual feature, time series models effectively capture the temporal
dynamics and context of the signals. Detailed results for the time series models
are shown in Tables A6, A7, and A8 in Appendix C.

4.4 Cross-Dataset Evaluation

We now investigate the transferability of time series models from simulated
datasets to a real-world dataset by cross-evaluating each simulated dataset with
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FARSEEING. To align with FARSEEING’s sensor specifications — 100Hz sam-
pling frequency and accelerometer range of ±2g — we resampled FallAllD and
SisFall to 100Hz and clipped their acceleration values accordingly. Standardisa-
tion was applied to all datasets.

In this experiment, we employ a single subject-wise train/test split for each
dataset, reserving 33% (13 subjects) of the FARSEEING dataset for testing. We
use this single test set T of 13 subjects exclusively from FARSEEING. We ex-
plored six training scenarios: training solely on the FARSEEING training set af-
ter excluding T , using each of the FallAllD and SisFall training sets individually,
individual combinations of the FallAllD and SisFall training sets with FARSEE-
ING (FallAllD+ and SisFall+), and a combination of FARSEEING, FallAllD,
and SisFall training sets (All). Each training set —FARSEEING, FallAllD, Sis-
Fall, FallAllD+, SisFall+, and All — was evaluated on the same test set T for
a consistent and fair comparison (detailed results in Table A9, Appendix C).

FARSEEING FallAllD FallAllD+ SisFall SisFall+ All
Training Set

40

60

80

100

sc
or

e

variable
precision
recall
f1-score

Fig. 6. Cross-dataset precision and recall obtained using time series techniques.

Fig. 6 illustrates that training on FallAllD and testing on FARSEEING gen-
erally led to low recall and F1 scores but slightly higher precision. Conversely,
training on SisFall and testing on FARSEEING resulted in low precision and
F1 scores, but higher recall. This disparity indicates that training on simu-
lated datasets and testing on real-world data can cause imbalances between
precision and recall, leading to either increased missed falls or increased false
alarms. Combining simulated and real-world datasets (FallAllD+ and SisFall+)
improved scores, with the combination of all three training sets giving a better
balance between precision and recall and lower variance overall. This suggests a
promising approach of augmenting real-world fall datasets with multiple simu-
lated datasets.

4.5 Comparison With Related Work

We compare our best results with results obtained with other techniques eval-
uated on FARSEEING, FallAllD, and SisFall. On FARSEEING, we compare
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with [39], which uses manual feature extraction and ResNet [42] evaluated on 22
subjects. On FallAllD, comparisons include TCN-TAM [36], DeepFall [18], and
CNN-GRU [24] employing convolutional neural networks and gated recurrent
units. On SisFall, comparisons are made with LSTM-CVAE [55], an RNN-based
approach [35], and an LSTM-based method [29].

We report each study’s cross-validation approach, recall, and F1 score as
documented by the respective authors (Table 4). Despite employing simple and
efficient time series techniques without explicit feature extraction, our results
are competitive with those achieved using deep learning models. However, this
comparison is only indicative due to differences in preprocessing steps.

Table 4. Performance Comparison with Related Work

Method Dataset CV Recall (%) F1 Score (%)
Feature-based [39]

FARSEEING
5-fold subject CV 81.1 64.6

ResNet* [42] NR 94.0 91.0
Ours (proposed) 5-fold subject CV 89.1 ± 11.5 90.7 ± 6.5
TCN-TAM [36]

FallAllD

NR 88.0 89.0
DeepFall [18] 5-fold NR 92.8
CNN and GRU [24] LOSO 92.5 94.3
Ours (proposed) 5-fold subject CV 98.7 ± 1.8 97.2 ± 1.9
LSTM-CVAE [55]

SisFall

NR 99.0 95.0
RNN [35] NR 96.7 NR
LSTM [29] 5-fold 96.4 NR
Ours (proposed) 5-fold subject CV 94.4 ± 4.8 96.7 ± 2.9

*This approach was trained and tested on only a subset of the dataset (22 subjects).
NR: Not reported. LOSO: Leave-One-Subject-Out cross-validation.

As shown in Table A1 (Appendix A.1), the Hydra model, which performs best
on average on the FARSEEING dataset, achieves a false alarm rate of 0.012 per
hour and a miss rate of 0.013 per hour. This corresponds to ≈ 28% chance of one
false alarm and a 31% chance of one missed fall per day. Therefore, a deployed
Hydra model could have as few as 1 false alarm and 1 missed fall in 3 days.

5 Conclusion

In this work, we presented a framework for real-world fall detection using state-
of-the-art time series techniques applied to real-world fall data. Our approach is
simple, efficient, and requires no manual feature engineering. We performed seg-
mentation in a manner that imitates real-time signals and includes the pre-fall
and post-fall contexts, with about 1 false alarm and 1 false negative in 3 days.
While our primary dataset was real-world, we also evaluated our method on two
simulated datasets and achieved comparable results. Experimentation with both
tabular and time series models across all datasets consistently demonstrated
superior performance of time series models. We also performed cross-dataset
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evaluation and found significant reductions in precision and recall when models
trained on simulated data were applied to real-world falls. However, we found
that extending real-world falls with multiple simulated datasets is a promis-
ing approach. Finally, we used a post-hoc explanation technique to highlight
segments of the motion time series that are relevant for each classifier (Ap-
pendix A.2).

We hereby propose four main practical considerations for fall detection,
namely, reality, accuracy, timeliness, and explainability (RATE). A realistic fall
detection algorithm should be validated, at least partially, using real-world falls,
possibly through a blend of simulated and real-world data. For accuracy, al-
gorithms must strike a balance between precision and recall, considering that
missed falls and false alarms are both undesirable. Real-time detection (timeli-
ness) is crucial to prevent prolonged immobility after a fall, known as "long-lie,"
which can lead to severe consequences. Finally, we suggest incorporating expla-
nations and online learning mechanisms to refine models based on segments that
contribute to false alarms and false negatives.

Although our proposed fall detection framework has good RATE character-
istics, there are a few limitations that will be addressed in future work. Currently,
we use a simple univariate time series approach for compatibility with tabular
baseline models. Future work will explore a multivariate approach using all ac-
celerometer axes and additional signals from the magnetometer and gyroscope
sensors. Deep learning models were excluded for efficiency reasons, but we plan
to investigate recent efficient models like LITE [16] and explore the use of reason-
able contract times for training models (see [12]). Lastly, the scarcity of publicly
available real-world fall datasets is a challenge. Future efforts will focus on curat-
ing and releasing open-source real-world fall datasets to advance fall detection
research.
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Appendix A Usability and Explainability

Appendix A.1 Estimated False Alarm and Miss Rates

Since we use an overlapping sliding window with a step size of 1 second, each
classifier would process a total of 1 × 60(secs) × 60(mins) = 3600 samples per
hour in practice. Taking the Hydra classifier as an example, we obtain a rough
estimate of false alarm and miss rates per hour (Table A1) in the following
manner.

Let P be the total number of falls, and N be the total number of ADLs per
hour, such that P +N = 3600. From the Fall : ADL ratio in Table 1, we know
that

P = 0.14N (1)

So that
0.14N +N = 3600 (2)

Hence, we can estimate the number of ADLs per hour as N = 3600
1.14 ≈ 3158, and

the number of falls P = 3600− 3158 = 442 per hour. Therefore, we estimate the
number of misses per hour, FN as

FN = P × (1−Recall) (3)

FN = 442× (1− 0.8913) (4)

FN ≈ 48 (5)

Similarly, false alarms per hour, FP :

FP = N × (1− Specificity) (6)

FP = 3158× (1− 0.986) (7)

FP ≈ 44 (8)

Hence, miss rate = 48
3600 ≈ 0.013, and false alarm rate = 44

3600 ≈ 0.012 per hour.

Table A1. False Alarm Rate and Miss Rate Per Hour

Model Ave. Recall Ave. Specificity False Alarm Rate Miss Rate
Catch22 72.04 96.55 0.030 0.034
Hydra 89.13 98.60 0.012 0.013
MultiRocketHydra 87.37 98.31 0.015 0.016
QUANT 88.74 98.34 0.015 0.014
Rocket 82.52 98.50 0.013 0.021
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Appendix A.2 Model Explanation

We use tscaptum [7, 45] to identify time intervals in motion data that influence
classifier decisions on FARSEEING. tscaptum groups adjacent time points into
segments of size c to enhance robustness and reduce runtime, with important
intervals identified by iteratively masking segments. SHAP (SHapley Additive
exPlanations) scores [28] are then obtained based on their impact on predictions.

We perform a subject-wise train-test split, using 30% (13 subjects) for testing
and 70% (28 subjects) for training (see Fig. A1). Temporal SHAP scores are ob-
tained on the test set with c = 100, representing a 1-second interval (sampled at
100Hz). This produces equally distributed attribution scores within each chunk,
matching the shape of the input sample.

We present attribution profiles for representative true positives, false posi-
tives, true negatives, and false negatives across all classifiers. Although the im-
pact phase occurs within t = [1, 2), attribution scores for Hydra (Fig. A2) and
MultiRocketHydra (Fig. A4) suggest uniform importance across all phases. How-
ever, Rocket (Fig. A3), Catch22 (Fig. A5), and QUANT (Fig. A6) show high
scores between the end of the falling phase and the start of the impact phase.
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Fig.A1. Confusion matrices for time series classifiers on the FARSEEING test set.
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Fig.A2. Hydra + SHAP temporal attribution profiles for some samples.
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Fig.A3. Rocket + SHAP temporal attribution profiles for some samples.

1.0

0.5

0.0

0.5

1.0
True Fall False Alarm

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
1.0

0.5

0.0

0.5

1.0
True ADL

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Missed Fall
attribution profile
normalised sample

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00MultiRocketHydra

At
tri

bu
tio

n 
sc

or
e

Time in seconds

Fig.A4. MultiRocketHydra + SHAP temporal attribution profiles for some samples.
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Fig.A5. Catch22 + SHAP temporal attribution profiles for some samples.
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Fig.A6. QUANT + SHAP temporal attribution profiles for some samples.

Appendix A.3 Model Runtime

In our experiments, we compute runtime in milliseconds (ms) as the time it takes
each model to perform inference on one sample. As shown in Fig. A7, the tabular
models run extremely fast. However, the time series models also run fast enough
to be deployed in real-time, with MultiRocketHydra having the slowest inference
speed of 144 milliseconds per sample in one instance.
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Fig.A7. Inference time per sample in milliseconds for all models

Appendix B Preprocessing Choices

Appendix B.1 Univariate vs Multivariate

We performed a single train/test split experiment on FARSEEING to compare
the performance of univariate acceleration magnitude with multivariate x, y, z
acceleration signals. As shown in Fig. A8, using univariate magnitude signals
with the time series classifiers showed significantly better scores in all metrics.
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sc
or

e
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Fig.A8. Univariate acceleration magnitude vs. multivariate x, y, z acceleration on
FARSEEING. Each box represents the performance of all time series classifiers.

Appendix B.2 Window Size and Post-fall Phase

We trained the time series models on the FARSEEING dataset with total sample
window sizes ranging from 3 seconds (1-second post-fall phase) to 27 seconds (25-
second post-fall phase). As shown in Fig. A9, longer post-fall phases improve
AUC but don’t necessarily improve recall, specificity, or F1 scores. In fact, they
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may degrade performance and increase runtime. Experts recommend that a 5-
second post-fall phase is sufficient to capture the necessary context.
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Fig.A9. Effect of post-fall window size on model performance on the FARSEEING
dataset.

Appendix C Extended Cross-validation Results

Here, we give more detailed results, including cross-validation split sizes and the
performance of each classifier on individual splits. We report the inference time
per sample (T) in milliseconds, AUC, precision, recall, specificity, and F1 score.

Table A2. Cross-validation splits

Dataset Fold Train Set Test Set
Subjects ADLs Falls Fall : ADL Subjects ADLs Falls Fall : ADL

FARSEEING

0 33 865 118 0.14 8 304 27 0.09
1 33 684 119 0.17 8 485 26 0.05
2 33 1094 125 0.11 8 75 20 0.27
3 33 1039 127 0.12 8 130 18 0.14
4 33 994 92 0.09 8 175 53 0.30

FallAllD

0 12 1082 373 0.34 2 197 93 0.47
1 12 1077 388 0.36 2 202 78 0.39
2 12 1058 403 0.38 2 221 63 0.29
3 12 1090 399 0.37 2 189 67 0.35
4 12 1199 423 0.35 2 80 43 0.54

SisFall

0 31 8957 1004 0.11 7 1886 196 0.10
1 31 8883 847 0.10 7 1960 353 0.18
2 31 8706 993 0.11 7 2137 207 0.10
3 31 8720 1073 0.12 7 2123 127 0.06
4 31 8945 937 0.10 7 1898 263 0.14
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Table A3. Performance of Tabular Models on the FARSEEING Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

ExtraTrees

0.40 99.0 72.7 88.9 97.0 80.0 0
0.30 99.0 94.1 61.5 99.8 74.4 1
1.10 98.0 89.5 85.0 97.3 87.2 2
0.70 100.0 100.0 88.9 100.0 94.1 3
0.50 100.0 100.0 88.7 100.0 94.0 4

KNN

0.10 80.0 60.0 55.6 96.7 57.7 0
0.10 78.0 85.7 23.1 99.8 36.4 1
0.30 65.0 40.0 40.0 84.0 40.0 2
0.20 86.0 100.0 44.4 100.0 61.5 3
0.10 87.0 100.0 26.4 100.0 41.8 4

LogisticCV

0.10 97.0 85.7 88.9 98.7 87.3 0
0.00 88.0 73.7 53.9 99.0 62.2 1
0.10 93.0 81.0 85.0 94.7 82.9 2
0.10 95.0 100.0 72.2 100.0 83.9 3
0.10 97.0 95.7 84.9 98.9 90.0 4

RandomForest

0.10 99.0 69.4 92.6 96.4 79.4 0
0.00 98.0 94.4 65.4 99.8 77.3 1
0.20 98.0 85.0 85.0 96.0 85.0 2
0.10 100.0 94.1 88.9 99.2 91.4 3
0.10 100.0 100.0 84.9 100.0 91.8 4

RidgeCV

0.00 97.0 100.0 74.1 100.0 85.1 0
0.00 91.0 100.0 50.0 100.0 66.7 1
0.00 96.0 93.8 75.0 98.7 83.3 2
0.10 98.0 100.0 66.7 100.0 80.0 3
0.00 98.0 100.0 71.7 100.0 83.5 4
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Table A4. Performance of Tabular Models on the FallAllD Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

ExtraTrees

0.51 100.0 98.8 86.0 99.5 92.0 0
0.51 99.0 87.4 97.4 94.6 92.1 1
0.47 98.0 78.4 92.1 92.8 84.7 2
0.50 98.0 92.4 91.0 97.4 91.7 3
0.87 99.0 93.3 97.7 96.3 95.5 4

KNN

0.25 76.0 86.7 14.0 99.0 24.1 0
0.2 88.0 87.8 46.2 97.5 60.5 1
0.25 75.0 62.2 36.5 93.7 46.0 2
0.27 77.0 85.7 26.9 98.4 40.9 3
0.69 91.0 100.0 34.9 100.0 51.7 4

LogisticCV

0.08 99.0 96.9 67.7 99.0 79.8 0
0.08 98.0 86.9 93.6 94.6 90.1 1
0.08 97.0 71.4 95.2 89.1 81.6 2
0.08 98.0 90.9 89.6 96.8 90.2 3
0.17 99.0 100.0 93.0 100.0 96.4 4

RandomForest

0.15 99.0 98.6 77.4 99.5 86.8 0
0.16 99.0 88.4 97.4 95.1 92.7 1
0.16 98.0 74.7 88.9 91.4 81.2 2
0.17 98.0 90.9 89.6 96.8 90.2 3
0.35 99.0 93.2 95.4 96.3 94.3 4

RidgeCV

0.03 99.0 98.3 60.2 99.5 74.7 0
0.03 99.0 92.3 92.3 97.0 92.3 1
0.03 97.0 77.0 90.5 92.3 83.2 2
0.03 98.0 93.1 80.6 97.9 86.4 3
0.04 99.0 97.5 90.7 98.8 94.0 4

Table A5. Performance of Tabular Models on the SisFall Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

ExtraTrees

0.14 99.0 99.2 63.3 100.0 77.3 0
0.12 99.0 89.8 84.7 98.3 87.2 1
0.13 98.0 86.9 73.4 98.9 79.6 2
0.13 100.0 85.7 75.6 99.3 80.3 3
0.13 98.0 94.0 65.8 99.4 77.4 4

KNN

0.31 96.0 90.3 76.0 99.2 82.6 0
0.28 98.0 87.9 82.4 98.0 85.1 1
0.29 92.0 85.2 72.5 98.8 78.3 2
0.30 97.0 84.1 87.4 99.0 85.7 3
0.31 93.0 77.4 68.8 97.2 72.8 4

LogisticCV

0.07 70.0 33.3 15.8 96.7 21.5 0
0.07 82.0 100.0 0.0 100.0 0.0 1
0.07 77.0 42.6 19.3 97.5 26.6 2
0.07 75.0 37.7 15.8 98.5 22.2 3
0.07 73.0 53.9 10.7 98.7 17.8 4

RandomForest

0.17 98.0 98.3 60.2 99.9 74.7 0
0.15 98.0 90.9 79.3 98.6 84.7 1
0.15 97.0 86.2 69.6 98.9 77.0 2
0.16 99.0 89.0 70.1 99.5 78.4 3
0.15 96.0 91.3 60.1 99.2 72.5 4

RidgeCV

0.02 72.0 100.0 0.5 100.0 1.0 0
0.02 78.0 100.0 0.0 100.0 0.0 1
0.02 77.0 71.4 2.4 99.9 4.7 2
0.02 70.0 100.0 2.4 100.0 4.6 3
0.02 72.0 100.0 0.8 100.0 1.5 4
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Table A6. Performance of Time Series Models on the FARSEEING Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

Catch22

5.8 96.0 76.7 85.2 97.7 80.7 0
4.1 95.0 76.2 61.5 99.0 68.1 1
17.9 95.0 65.2 75.0 89.3 69.8 2
9.3 99.0 84.6 61.1 98.5 71.0 3
7.6 98.0 93.2 77.4 98.3 84.5 4

Hydra

18.2 98.0 96.3 96.3 99.7 96.3 0
17.2 85.0 94.7 69.2 99.8 80.0 1
61.4 96.0 86.4 95.0 96.0 90.5 2
37.2 94.0 94.1 88.9 99.2 91.4 3
30.3 97.0 94.4 96.2 98.3 95.3 4

MultiRocketHydra

25.1 98.0 89.7 96.3 99.0 92.9 0
19.4 85.0 94.7 69.2 99.8 80.0 1
69.7 92.0 81.8 90.0 94.7 85.7 2
44.9 94.0 94.1 88.9 99.2 91.4 3
33.3 96.0 96.1 92.5 98.9 94.2 4

QUANT

5.4 100.0 80.7 92.6 98.0 86.2 0
7.9 99.0 94.7 69.2 99.8 80.0 1
18.2 98.0 86.4 95.0 96.0 90.5 2
8.3 100.0 89.5 94.4 98.5 91.9 3
10.5 100.0 98.0 92.5 99.4 95.2 4

Rocket

3.9 95.0 78.1 92.6 97.7 84.8 0
2.8 86.0 82.6 73.1 99.2 77.6 1
12.6 87.0 93.8 75.0 98.7 83.3 2
8.4 94.0 94.1 88.9 99.2 91.4 3
5.9 90.0 91.7 83.0 97.7 87.1 4

Table A7. Performance of Time Series Models on the FallAllD Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

Catch22

15.9 100.0 97.8 96.8 99.0 97.3 0
15.5 99.0 84.6 98.7 93.1 91.1 1
16.4 98.0 88.7 87.3 96.8 88.0 2
16.0 98.0 89.9 92.5 96.3 91.2 3
35.4 100.0 100.0 100.0 100.0 100.0 4

Hydra

63.8 97.0 100.0 93.6 100.0 96.7 0
61.7 98.0 91.7 98.7 96.5 95.1 1
60.1 98.0 98.4 96.8 99.6 97.6 2
66.3 92.0 87.0 89.6 95.2 88.2 3
126.4 100.0 100.0 100.0 100.0 100.0 4

MultiRocketHydra

67.9 98.0 98.9 96.8 99.5 97.8 0
75.3 98.0 88.6 100.0 95.1 94.0 1
69.6 98.0 98.4 96.8 99.6 97.6 2
74.6 99.0 95.7 100.0 98.4 97.8 3
143.6 99.0 97.7 100.0 98.8 98.9 4

QUANT

9.4 100.0 98.9 95.7 99.5 97.3 0
13.5 100.0 89.5 98.7 95.5 93.9 1
12.3 100.0 96.7 93.7 99.1 95.2 2
17.3 100.0 94.4 100.0 97.9 97.1 3
29.9 100.0 100.0 97.7 100.0 98.8 4

Rocket

11.9 96.0 100.0 91.4 100.0 95.5 0
12.1 97.0 94.9 96.2 98.0 95.5 1
12.2 97.0 98.4 95.2 99.6 96.8 2
13.4 93.0 92.2 88.1 97.4 90.1 3
26.2 99.0 95.6 100.0 97.5 97.7 4
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Table A8. Performance of Time Series Models on the SisFall Dataset

Model T (ms) AUC Precision Recall Specificity F1 Score Fold

Catch22

12.7 99.0 83.5 90.3 98.1 86.8 0
11.5 100.0 97.5 97.7 99.5 97.6 1
12.5 99.0 95.6 83.6 99.6 89.2 2
16.9 100.0 95.9 92.9 99.8 94.4 3
13.2 99.0 100.0 84.0 100.0 91.3 4

Hydra

36.6 97.0 95.8 93.9 99.6 94.9 0
35.5 99.0 99.7 98.9 100.0 99.3 1
32.8 94.0 96.8 87.4 99.7 91.9 2
35.9 99.0 95.5 99.2 99.7 97.3 3
37.0 96.0 95.7 92.8 99.4 94.2 4

MultiRocketHydra

41.3 96.0 98.9 91.3 99.9 95.0 0
38.1 100.0 100.0 100.0 100.0 100.0 1
38.4 95.0 96.9 90.3 99.7 93.5 2
40.4 100.0 100.0 99.2 100.0 99.6 3
42.1 96.0 100.0 91.3 100.0 95.4 4

QUANT

4.4 100.0 94.3 93.4 99.4 93.9 0
4.4 100.0 97.7 97.7 99.6 97.7 1
3.5 99.0 87.4 87.4 98.8 87.4 2
5.1 100.0 100.0 96.1 100.0 98.0 3
5.9 100.0 98.4 90.9 99.8 94.5 4

Rocket

9.2 95.0 88.9 90.3 98.8 89.6 0
8.7 99.0 100.0 98.6 100.0 99.3 1
8.5 94.0 97.8 87.4 99.8 92.4 2
8.7 99.0 90.7 99.2 99.4 94.7 3
8.9 93.0 100.0 85.9 100.0 92.4 4
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Table A9. Results of Cross-Dataset Evaluation

Training Set Model T (ms) AUC Precision Recall Specificity F1 Score

FARSEEING

Hydra 47.7 96.0 91.4 94.1 97.2 92.8
Rocket 8.7 93.0 86.1 91.2 95.3 88.6
MultiRocketHydra 49.9 96.0 94.1 94.1 98.1 94.1
Catch22 18.5 97.0 88.9 70.6 97.2 78.7
QUANT 43.4 100.0 91.7 97.1 97.2 94.3

FallAllD

Hydra 40.2 76.0 90.0 52.9 98.1 66.7
Rocket 9.0 74.0 64.5 58.8 89.7 61.5
MultiRocketHydra 43.3 82.0 85.2 67.7 96.3 75.4
Catch22 13.5 86.0 73.5 73.5 91.6 73.5
QUANT 41.5 91.0 85.2 67.7 96.3 75.4

FallAllD+

Hydra 58.9 91.0 96.6 82.4 99.1 88.9
Rocket 13.6 86.0 83.9 76.5 95.3 80.0
MultiRocketHydra 76.8 90.0 93.3 82.4 98.1 87.5
Catch22 29.9 98.0 93.3 82.4 98.1 87.5
QUANT 69.7 98.0 96.3 76.5 99.1 85.3

SisFall

Hydra 150.4 69.0 38.0 79.4 58.9 51.4
Rocket 47.5 76.0 39.5 100.0 51.4 56.7
MultiRocketHydra 195.0 69.0 37.3 82.4 56.1 51.4
Catch22 93.4 88.0 31.4 97.1 32.7 47.5
QUANT 81.7 84.0 46.2 88.2 67.3 60.6

SisFall+

Hydra 180.8 93.0 80.0 94.1 92.5 86.5
Rocket 52.5 94.0 78.6 97.1 91.6 86.8
MultiRocketHydra 218.7 94.0 88.6 91.2 96.3 89.9
Catch22 109.7 95.0 77.1 79.4 92.5 78.3
QUANT 54.9 98.0 83.3 88.2 94.4 85.7

All

Hydra 197.9 91.0 87.9 85.3 96.3 86.6
Rocket 59.1 88.0 74.4 85.3 90.7 79.5
MultiRocketHydra 233.9 88.0 90.0 79.4 97.2 84.4
Catch22 141.6 94.0 84.9 82.4 95.3 83.6
QUANT 122.8 95.0 82.4 82.4 94.4 82.4
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