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Abstract. Integrating the erratic production of renewable energy into
the electricity grid poses numerous challenges. One approach to stabilising
market prices and reducing energy losses due to curtailments is the
deployment of batteries. Efficient electricity arbitrage is crucial to make
investments in storage systems financially viable; trading solutions to
achieve this rely on price forecasting techniques. This study delves into
the application of Conformal Prediction (CP) techniques, including Ensemble
Batch Prediction Intervals (EnbPI) and Sequential Predictive Conformal
Inference for Time Series (SPCI), for generating probabilistic forecasts in
the Irish electricity market. Recent advancements in CP have addressed
temporal considerations inherent in time series forecasting, eliminating
the need for exchangeability assumptions. Our study demonstrates that
despite potential efficiency trade-offs, CP methods consistently yield
precise and reliable prediction intervals, ensuring comprehensive coverage.
We assess the impact of CP on the financial results of a simulated
trading algorithm. Monetary outcomes achieved with EnbPI and SPCI
outperform those of both split CP and traditional quantile regression
models, highlighting the practical superiority of CP in electricity price
forecasting.

1 Introduction

Electricity price forecasting (EPF) is paramount for energy companies navigating
volatile markets, sudden price shifts, and changing demand patterns. The widespread
integration of renewables can introduce volatility in net power supply due to
rapid and unforeseen changes in their output, potentially resulting in reliability
concerns within the power system (Martinez-Anido et al. [2016]). The incorporation
of energy storage technologies such as Battery Energy Storage Systems (BESS)
can enhance the reliability and efficiency of the grid, improving market liquidity
and reducing price volatility. With the integration of renewable energy sources
and smart grids, forecasting accuracy becomes increasingly critical. Accurate
predictions stabilize energy production planning and inform risk-aware strategies.
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Ireland is particularly interesting in this perspective. The renewable component
accounted for 39.5% of the total electricity production in 2020 (EirGrid| [2022]).
However, a consistent part of this power is wasted due to curtailments, e.g. when
the production exceeds the demand. In Ireland, between 3% to 6% of electricity is
lost every year due to this offer/demand mismatch. This barrier strongly limits
the extension of the current renewable production and hinders the efforts to
reach carbon neutrality. The introduction of BESS is an efficient way to tackle
this issue. Precise forecasts are indispensable for market operations, notably
in the Day-Ahead Market (DAM), Intra-Day Market (IDM), and Balancing
Market (BM) within European electricity markets (Green and Vasilakos| [2010],
Martinez-Anido et al. [2016]). In the Irish single electricity market, the DAM
represents a market with significant contributions to grid stability, with volume
far exceeding both the IDM and BM. The DAM facilitates trading for electricity
delivery the next day, with daily auctions at noon CET that establish initial
market prices for electricity. The transition from deterministic to probabilistic
forecasting signifies a significant shift in the need for nuanced predictions in the
face of escalating uncertainties in future supply, demand, and prices. Probabilistic
Electricity Price Forecasting (PEPF), in particular quantile forecasts, has emerged
to address uncertainties and provide decision-makers with a comprehensive understanding
of potential outcomes. While traditional point forecasting methods established
the groundwork, the rise of quantile forecasting, spurred by initiatives like the
Global Energy Forecasting Competition 2014 (GEFCom2014), has ushered in
a new era. However, the challenge of robust uncertainty quantification persists,
prompting exploration beyond conventional methodologies such as Quantile Regression
(QR) and QR Averaging (QRA) (Maciejowska et al.| [2016], Nowotarski and
Weron| [2018], [Uniejewski and Weron| [2021]).

Conformal Prediction (CP) emerges as a promising alternative to both QR
and QRA for generating prediction intervals (PI), offering both validity and
adaptability without relying on strict assumptions. Initially introduced in Gammerman
et al. [1998] and subsequently extended to regression and classification domains
by |Vovk et al.| [2005] and |Shafer and Vovk|[2008|. CP works by using past data to
create a model that predicts future outcomes, providing a measure of confidence
in the PI. A key feature of CP is its ability to deliver valid PI regardless of
the underlying model, making it a flexible and reliable tool for uncertainty
quantification. One of the foundational concepts in CP is data exchangeability,
which assumes that the order of data points does not affect the statistical
properties of the data set. While this assumption simplifies the development of
CP methods, it presents significant challenges in time series applications, where
the order and dependencies of data points are crucial. Traditional CP methods,
which depend on exchangeability, often struggle to handle these dependencies
effectively. To address these limitations, recent advancements in CP, such as
Ensemble Batch Prediction Intervals (EnbPI) (Xu and Xie|[2021]) and Sequential
Predictive Conformal Inference for Time Series (SPCI) (Xu and Xie [2023]),
have been developed. EnbPI enhances the flexibility and accuracy of PI by
using ensemble methods, which combine multiple models to improve predictive
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performance. SPCI, on the other hand, modifies the CP framework to better
handle the sequential nature of time series data, ensuring that the PI remain valid
even when data points are dependent on previous values. Focusing on these novel
methods is important because they significantly improve the applicability of CP
in dynamic fields like electricity markets, where accurate and reliable predictions
are crucial for decision-making. By overcoming CP’s traditional limitations,
EnbPI and SPCI provide more reliable PI, crucial for renewable energy integration,
where high uncertainties make reliable forecasts essential for market stability and
efficient trading. This paper undertakes a thorough investigation into PEPF by
leveraging recent advancements in CP methodologies, particularly adaptations
tailored for time series data. We examine these adapted CP techniques alongside
traditional QR approaches. Our study focuses on recent contributions to probabilistic
forecasting, emphasizing how uncertainty can be transformed into an opportunity
rather than a source of risk. In an extensive numerical analysis, the significance
of coverage guarantees in enhancing trading strategies and fostering market
resilience is assessed with an economic simulation.

The structure of this paper is as follows: Section [2| provides an overview
of recent advancements in PEPF within the context of the DAM. Section
presents the dataset used in our empirical analysis. In Section [ we detail
our methodological framework, including our approach, models, and trading
strategies. Section[5]presents the empirical findings, comparing the efficacy of CP
with traditional methods through quantitative metrics and financial evaluations.
Finally, Section [6] summarizes our findings.

2 Related Work

In this section, we present an overview of recent advancements in PEPF methodologies,
focusing on modern CP techniques within the context of their application to the
DAM.

2.1 Probabilistic Forecasting

Recent reviews by Khosravi and Nahavandi| [2014] and Khajeh and Laaksonen
[2022] have underscored the growing prominence of probabilistic forecasting in
addressing uncertainties inherent in smart grids, supply-demand dynamics, and
price variations. Notably, [Nowotarski and Weron| [2018| and [Tzallas et al.[ [2022]
have provided extensive insights into various PEPF methodologies, ranging from
autoregressive models to neural networks and ensemble techniques. These reviews
have critically evaluated methods like QRA, highlighting its dominance despite
inherent limitations. Recent advancements in prediction interval generation, such
as the methodology proposed in |S. Salem et al.|[2020], which leverages ensemble
neural networks to generate prediction intervals alongside point estimates, contribute
to the evolving landscape of regression analysis. [Leverger et al. [2021] introduces
a method that uses clustering to identify seasonal patterns and classification
to enhance forecast accuracy. This hybrid approach improves the reliability of
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probabilistic forecasts for seasonal data. Furthermore, [Oesterheld et al.| [2023]
delves into the realm of performative predictions, where the act of making
predictions can influence outcomes, shedding light on a crucial aspect of predictive
modelling. In response to these limitations, recent studies by
[Weron| [2021], |[Uniejewski| [2023] have introduced novel approaches such as Lasso
QRA and smoothed QRA with kernel estimation, showcasing superior performance
in trading strategies and financial outcomes. |[O’Connor et al| [2024] compares
statistical, machine learning, and deep learning models for EPF in the Irish BM,
finding that simpler statistical models like LEAR outperform more complex ones.
The study provides a framework for model evaluation and offers an open-source
dataset and models, which we utilize for our forecasting evaluation. Additionally,
advancements in deep learning models, as explored in [Lago et al| [2021], 2018§],
Marcjasz et al. [2020, [2022], have demonstrated notable improvements in both
point and probabilistic forecasting.

2.2 Conformal Prediction

CP has emerged as a versatile framework for uncertainty quantification, as
highlighted by Dewolf et al|[2023|, emphasizing its significance in regression
prediction intervals. Notably, recent work in [Foygel Barber et al| [2022] has
addressed CP’s traditional challenge in handling time series data by introducing
weighted residual distributions, enhancing robustness and reliability in prediction
intervals, while|Ghosh et al.|[2023] presents an approach to improve CP’s robustness
to outliers. In the domain of time series forecasting, Jensen et al.| [2022] introduced
Ensemble Conformalized Quantile Regression (EnCQR), showcasing superior
performance in handling heteroscedastic data and ensuring reliable prediction

intervals. Similarly, 2022| employed Conformal Quantile Regression

(CQR) with neural networks, surpassing traditional methods in wind power
forecasting accuracy. In a PEPF context, the only paper of its kind,
looks at CP as a robust framework to enhance time series forecasting and
manage uncertainty. CP provides dynamic and symmetric prediction intervals,
emphasizing balanced construction, effective sampling, and error-based normalization.
Comparative analysis with QRA underscores CP’s market sensitivity and model
selection importance. Of particular relevance to our study, Kath and Ziel| [2021]
investigated CP as a framework to enhance time series forecasting and manage
uncertainty. Recent advancements like EnbPI proposed by [Xu and Xie| [2021] and
SPCI introduced by Xu and Xie [2023] have addressed exchangeability issues in
time series data, offering promising avenues for uncertainty estimation in PEPF
applications.

2.3 Trading

In the realm of energy trading, [Krishnamurthy et al.| [2017], || Narajewski and|
[2021), [Uniejewski and Weron|[2021],[Uniejewski| [2023] have made significant
contributions to the development of effective trading strategies for energy storage
systems. Noteworthy findings include the supremacy of stochastic models and
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optimal bidding strategies. Additionally, studies by [Staffell and Rustomyji [2016],
Tohidi and Gibescy| [2019], and [Abramova and Bunn| [2021] have explored the
economic viability of energy storage systems, addressing various aspects such as
profitability, revenue evaluation, and battery pack degradation. O’Connor et al.
[2024b| integrates renewable energy into markets with battery storage. The study
enhances DAM and BM trading using quantile-based forecasts and increased
trading frequency. It highlights the economic viability of larger batteries, precise
quantile pair selection, and high-frequency trading for maximizing profits. In
summary, this review highlights advancements in PEPF methodologies, encompassing
DAM forecasting, CP integration, insights into energy storage systems, and
effective trading strategies. However, notable gaps remain, particularly regarding
the applicability of recent improvements in probabilistic approaches to EPF. Our
study aims to address these gaps by presenting methodologies to enhance energy
trading strategies in the DAM, focusing on modern adaptations of CP for time
series applications.

3 Datasets

Data for this study were sourced from the Single Electricity Market Operator for
Ireland (SEMO). Information regarding prices, network parameters and forecasts
are available from SEMqﬂ & SEMOprl We collected and analyzed historical
data and Transmission System Operator (TSO) predictions from 2019 to 2022,
revealing that electricity prices exhibit significant volatility closely linked to
demand and wind forecasts during this period, as illustrated in [I}

In the Irish DAM, prices are determined with hourly granularity, established
at 11 pm on the preceding day. Bids for the DAM must be submitted before
midday of the previous day to facilitate efficient market operations. Focusing
on predicting DAM prices for the 24 settlement periods of the subsequent day.
This temporal alignment ensures timely dissemination of forecasting insights,
enabling market participants to strategise and make informed bidding decisions
in advance. Our analysis incorporates a comprehensive set of regressors to predict
DAM prices. These include historical DAM prices spanning the previous 168
hours, alongside corresponding forecasts of demand and wind speed. Additionally,
we integrate past 168-hour DAM prices. This selection of attributes offers a
robust foundation for price forecasting, capturing both historical trends and
relevant external factors such as demand and weather conditions. For further
details on our forecasting approach, market structure, datasets, and variables
for both the DAM and BM, please refer to |O’Connor et al.|[2024a].

4 Methodology

This section delineates our study’s methodology, focusing on key models and
forecasting approaches across three primary stages: probabilistic forecasting models

3 https://www.sem-o.com/
* https://www.semopx.com /market-data,/
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Fig. 1: Electricity Price and Demand Forecasts

(Section [4.1]), corresponding approaches (Section7 and the evaluation of our
models (Section|5.1]). Our approach, encompassing both forecasting and trading,
comprises five key steps:

1.

4.1

Data Collection and Preparation: Aggregating historical and forward-looking
data from the ISEM for the DAM.

Data Pre-processing and Model Optimization: We pre-process the data and
optimize each predictive model. Hyperparameter tuning is conducted using
three-month data subsets to enhance model performance.

Walk-Forward Model Validation: Performing iterative walk-forward validation
to ensure the reliability of our models, continuously updating the time horizon.
Quantile Forecasting: Generating quantile forecasts using optimized models
based on unseen test data, spanning 24 hours.

. Financial Evaluation: We compare all quantile pairs for each methodology

in a single trade scenario to assess average forecasting model performance.

Quantile Regression Models

Our study employs quantile regression models, a statistical technique estimating
conditional quantiles. These quantiles form a "quantile pair," defining a forecast
range with lower and upper bounds, offering potential values within a specified
confidence level. Specifically, we examine two quantile pairs: QP1, encompassing

the

0.1-0.9 quantiles, denoted by o = 0.1 and its complementary quantile 0.9,



Conformal Prediction Techniques for Electricity Price Forecasting 7

and QP2, comprising the 0.3-0.7 quantiles. The probabilistic regressor models
benchmarked are:

— LASSO Estimated AR (LEAR): A modified autoregressive time series approach
incorporating LASSO regularization for improved performance and feature
selection.

— K-Nearest Neighbors (KNN): A non-parametric instance-based learning approach
that predicts an instance’s output by comparing it to the "K" nearest neighbors
in the training set.

— Random Forest (RF): An ensemble model that combines multiple regression
trees.

— Light Gradient Boosting Method (LGBM): Similar to RF, LGBM uses multiple
regression trees but follows the boosting principle.

4.2 Split Conformal Prediction

Split Conformal Prediction (SCP) (Shafer and Vovk|[2008|) has limited application
to time series data due to strict requirements for data exchangeability, it contributes
valuable insights into constructing prediction intervals without relying on specific
distribution assumptions.

Ensemble Batch Prediction Intervals (EnbPI) The EnbPI algorithm, as
introduced in Xu and Xie| [2021], emerges as a leading CP method tailored for
dynamic time-series forecasting, effectively addressing the challenges posed by
time series data without relying on data exchangeability assumptions. EnbPI’s
key features include its adaptability to dynamic time series, ensuring the importance
of the sequence of data points is acknowledged, which is a crucial factor often
overlooked by conventional CP methods. It provides PI with finite-sample, approximately
valid marginal coverage, particularly for regression functions and time series
with mildly mixing stochastic errors. EnbPI also demonstrates computational
efficiency by avoiding overfitting without the need for data splitting or training
multiple ensemble estimators.

Sequential Predictive Conformal Inference for Time Series (SPCI)
The SPCI algorithm, introduced as an advancement on EnbPI in Xu and Xie
[2023], presents a more versatile framework for time-series forecasting by directly
leveraging the dependency of residuals when constructing PI, offering distinct
advantages over previous methods. SPCI’s key features include its utilization of
residual dependencies, enhancing adaptability to dynamic time series. It employs
a conditional quantile estimator rather than relying on empirical quantiles,
resulting in more accurate PI estimates. SPCI also serves as a more general
framework compared to both EnbPI and split conformal methods, capable of
encompassing the functionalities of both through appropriate component selection.
Furthermore, the computational efficiency of SPCI is maintained by fitting conditional
quantile estimators using quantile models, ensuring effectiveness in sequential
settings. For both EnbPI and SPCI, each model is run once, with bootstrap set
to 15 for both the DAM and BM.
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5 Experimental Results

This section analyzes probabilistic approaches and forecasting models in the
DAM. Using diverse metrics, statistical tests, and financial indicators, we assess
each model’s efficacy in quantile regression and modern CP adaptations. Starting
with Section [5.1] we analyze forecast accuracy through calibration, coverage,
sharpness, and statistical testing metrics, aiming to evaluate the accuracy, reliability,
and precision of probabilistic forecasts. Subsequently, in Section [5.2] we conduct

a comparative analysis of outcomes across forecasting models, uncovering economic
implications associated with each approach.

5.1 Evaluation

Our evaluation of probabilistic predictions focuses on two crucial dimensions:
validity and efficiency. Efficiency, gauged through metrics like sharpness and
interval width, enhances precision. Simultaneously, validity, including calibration
and coverage, demands the generation of precise PI to affirm the reliability of our
forecasts. Subsequent sections delve into each of these aspects with statistical
testing. The evaluation culminates in the financial assessment of probabilistic
approaches in Section[5.2} The Python code used for this section and the dataset
are made available to ensure reproducibility GitHu

Efficiency: Pinball Score & Interval Width In the DAM, sharpness plays
an important role in accurate anticipation, hedging, and real-time adjustments.
The Pinball Score, derived from the Pinball Loss function, reflects the sharpness
of the forecast based on the quantile prediction ¢, p and observed price Pjp:
PS(Ga,p, Pan, ) =
{(1 - O‘)(qAa,P - Pd,h) for Pd,h < QQ,p (1>
(@)(Pah — da,p) for Pyp > dap
Analyzing the Aggregate Pinball Score (APS) for DAM models, as illustrated
in Table [T} with the lowest APS for marked in bold, we observe that both SCP
and QR under-perform time-series adapted EnbPI and SPCI. Despite this under-
performance, the top two models in APS are QR versions of RF and LGBM.
This can be attributed to the high baseline accuracy of these models, limiting the
potential improvement introduced by CP. In contrast, models with lower baseline
accuracy, such as KNN and LEAR, experience a substantial enhancement with
CP. LEAR sees a notable reduction in split CP and further in EnbPI in SPCI.
Similarly, KNN exhibits a reduction from 6.65 to 5.71 for EnbPI and 6.09
for SPCI but faces a sharp increase in CP. This indicates that CP methods
effectively mitigate the limitations of less accurate models, leading to significant
improvements in forecast performance.

5 https://github.com/ciaranoc123/PEPF_Conformal
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Model QR CP EnbPI SPCI

KNN 6.65 7.79 5.71 6.09
LEAR 8.35 4.81 4.18 4.08
LGBM 3.62 3.67 3.76 3.71
RF 3.63 3.85 3.81 3.84
Avg. 5.56 4.99 4.37 4.43

Table 1: Aggregrate Pinball Score Scores. in green, the best approach for each
regressor.

Moving further into efficiency, the assessment extends beyond sharpness,
focusing on width. While sharpness ensures reliability, efficiency, intricately linked
to PI width, is pivotal in refining precision. Post-validity optimization enhances
overall robustness and accuracy. An important highlight of the models utilizing
CP is the interval width, showcased in Figure 2] CP for highly accurate models
reduces the interval width, while for less accurate models, it widens the interval
width. This trend is evident in the consistent decline for EnbPI and SPCI models,
where greater accuracy corresponds to a smaller interval and vice versa. This
occurs due to the coverage guarantee, where less accurate models widen their
intervals to meet this guarantee, a behaviour not observed in QR models. RF,
while showing a similar high accuracy compared to LGBM, has a considerably
different interval width, but it does achieve better coverage compared to other
QR models. This holds for SCP, which, despite the high accuracy, fails to produce
a narrow interval width as EnbPI and SPCI succeed with. The variance between
the average Interval Widths is minimal.
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Fig. 2: Interval Width for each model in the DAM
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Validity: Coverage and Kupiec Test Both reliability and accuracy of probabilistic
forecasts are vital, with a particular focus on evaluating their validity. For this, we
examine the model’s coverage, which entails assessing precision in capturing the
price Py, within predefined probability levels or intervals (Ld, h*, Ud, h®), with
close scrutiny of the nominal coverage level a. Empirical coverage, indicating the
alignment of predictions with specified intervals, is expressed through the binary
indicator I3, for a given day d and hour h:

N 1for Pyy € [Lg,US
Ith — { [ d,h Ad,h] (2)

0 for Pyp ¢ [ﬁg,hU«‘iX,h]

Coverage metrics highlight the models’ ability to capture the true distribution.
Figure [3| provides a comprehensive coverage analysis across the 0.1-0.9 quantile
range in the DAM, revealing the efficacy of diverse forecasting methodologies.
In the DAM context, targeting a coverage of 0.8 for the 0.1-0.9 quantile range,
CP models outperform QR counterparts. SCP, EnbPI, and SPCI models achieve
commendable average coverages of 0.82, 0.83, and 0.80, respectively. In contrast,
QR models lag significantly with an average coverage of 0.62, highlighting the
superiority of CP methodologies in attaining target coverage levels and affirming
their advantage over traditional QR techniques in probabilistic forecasting.
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Fig. 3: Coverage for 0.1-0.9 quantile pair

In the 0.3-0.7 quantile pair analysis aiming for 0.4 coverage within the DAM
framework (see Figure , CP methodologies demonstrate pronounced impact.
All CP-based models achieve the desired coverage, contrasting sharply with only
one QR model meeting the criterion (RF being the sole exception). This stark
contrast underscores CP’s pivotal role in forecasting, ensuring robust coverage
guarantees. The coverage performance gap between QR and CP approaches
is significant. The QR model’s average coverage is only 0.35, notably lower
than that of CP-based strategies. SCP, EnbPI, and SPCI models yield average
coverages of 0.59, 0.59, and 0.56, respectively, highlighting CP methodologies’
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superior performance in attaining target coverage levels and enhancing the reliability
of probabilistic forecasts within the dynamic electricity market domain.
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Fig. 4: Coverage for 0.3-0.7 quantile pair

The Kupiec test evaluates binary prediction model accuracy using labels (1
or 0) determined by predicted values falling within specified upper and lower
bounds. For a model with 7" total observations, R events, predicted probability
p, and significance level «, the test statistic is:

x* = —2[Rlog(p) + (T — R)log(1 — p)]

The critical value x?2,;, (one degree of freedom) is used to compare with X2. If
X2>x2,.;» the null hypothesis of well-calibrated predictions is rejected.

To provide a comprehensive assessment, we perform the Kupiec test for
unconditional coverage at 40% and 80% PI for each hour of the day, reporting
the number of hours that pass the test.

QR SCP EnbPI SPCI
Model QP1 QP2 QP1 QP2 QPl1 QP2 QP1 QP2
KNN 0O 0 7 20 14 0 0 0
LEAR o 0 3 0 0 0 9 0
RF 2 5 21 0 6 8 0 12
LGBM 0 0 7 0 22 0 23 0
Total 2 5 38 20 42 8 32 12

Table 2: Number of Hours that pass the Kupiec test. QP1 = quantile pair 0.1-
0.9, QP2=quantile pair 0.3-0.7

Table [2] provides insights into model performance across quantile pairs in
the DAM, focusing on the hours passing the Kupiec Test, with the best results
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for each QP marked in bold. Only the RF model among QR models passes the
test, totalling 7 hours out of 192. In contrast, CP approaches exhibit notable
performance, exhibiting statistically significant performances 58 times. EnbPI
models pass 50 hours, while SPCI models pass 44 hours. The significant difference
in results between QR and CP approaches aligns with coverage outcomes in

Figures [3] and [

Efficiency & Validity: Winkler Score The Winkler Score (W, ;,) amalgamates
reliability and sharpness, providing a concise metric for the comprehensive assessment
of probabilistic forecasts. It evaluates the width (B, ;) of prediction intervals
based on observed values (y;, 1), incorporating a penalty factor («) for deviations
from the interval bounds:

B p if ye.n € [Lip, Upp]
Win =4 Ben+a(Len —yen) i yen < Lin
By + Oéz(yt,h —Un) ifyen > Un
Ultimately, Winkler Scores shed light on how well models ability to strike a
balance between accuracy and interval width. Table[3]provides a detailed overview

of Winkler Scores, offering insights into the efficiency and validity of different
forecasting models in the dynamic electricity market landscape. The analysis

Model QR CP  EnbPI SPCI

KNN 57.02 64.16 51.47  56.16
LEAR 61.97 36.30 37.37 35.06
LGBM 29.87 30.39 32.76 31.31
RF 22.89 30.81 32.14 31.65
Avg. 4294 39.51 38.44  38.55

Table 3: Winkler Scores

in Table [3] highlight RF’s dominance across all methodologies, with a Winkler
Score of 22.89 in the QR framework. However, QR approaches are hindered by
both KNN and LEAR’s subpar results. In contrast, CP methods demonstrate
consistent performance, with SPCI notably benefiting LEAR. Despite QR models,
RF and LGBM, low accuracy and narrow interval width, challenges persist with
models like KNN and LEAR. This underscores the need to explore alternative
strategies, particularly CP approaches. Overall, accurate QR models excel in
accuracy and precision in interval estimation, emphasizing their significance in
probabilistic forecasting, especially in scenarios prioritizing accuracy and interval
width.

Statistical Testing: Giacomini and White (2006) CPA Test To draw
statistically significant conclusions, we employ the Giacomini and White (Giacomini
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[2006]) Conditional Predictive Ability (CPA) test, utilizing a generalized
Diebold-Mariano approach with a 24-dimensional vector of Pinball Scores for
each day. The test statistic Ax y,q measures the difference between the L1 norms
of APS vectors for models X and Y:

Axy,a = [|[APSx 4l — [|[APSy.qll

where:
24 0.9

|APSx 4| = Z Z PS(Ga,p, Pan, )

h=1a=0.1

for model X. P-values for the CPA test are computed for each model pair and
dataset under the null hypothesis Hy : ¢ = 0 in the regression: Axy,q =

Qﬁ/Xd—l +€4, where X4_1 contains day d—1 information, including a constant and
lags of Ax yq4. This test evaluates the reliability and precision of probabilistic
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Fig.5: Giacomini and White Test DAM

forecasts across a 24 hour horizon, offering insights into a model’s capability to
navigate evolving dynamics and uncertainties in electricity markets.

Figure [§] presents p-values using a chessboard representation. Dark green
shades indicate the most significant differences between a model’s forecast on the
X-axis (better) and the forecast on the Y-axis (worse), with models arranged by
APS. All CP methods, EnbPI, and SPCI, show statistically significant improvements
for LEAR, suggesting enhanced forecasting accuracy. Conversely, KNN is significantly
outperformed by all other models. RF, the top-performing model, demonstrates
significant outperformance over all others, with SCP showing the best APS.

5.2 Financial Performance Analysis

This section outlines our BESS trading strategy, which is crucial for ensuring grid
stability and seamlessly integrating renewable energy into the dynamic energy
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landscape. This is evaluated with our Single trade strategy (TS1). TSI is a rule-
based heuristic trading strategy adapted from |Uniejewski and Weron| [2021],
Uniejewski| |[2023]. This strategy utilizes quantile-based forecasts to optimize
trading decisions involving a hypothetical 1 MWh battery with no discharge
limit, 80% discharge efficiency, and 98% charge efficiency. Over the time horizon
of 24 hours, a single buy-sell pair trade is permitted, with the requirement that
the buy trade occurs before the sell trade.

Table 4: Financial Performance Comparison of DAM Models
Model | QR CP EnbPI SPCI

KNN | €14,133 €14,342 €14,488 <€13,374
LEAR | €2889 €15970 €17,136 <€16,869
LGBM | €16,101 €16,932 <€16,749 €16,676
RF €16,652 <€16,883 €16,862 €16,295
Avg. | €12,444 €16,032 <€16,309 €15,304

In Table ] CP adoption significantly improves LEAR and KNN models,
with LEAR showing the most substantial enhancement. However, QR models’
performance is notably impacted by LEAR and KNN, dragging down their
average performance. Despite this, QR models perform comparably to CP approaches
for LGBM and RF models, although CP models surpass QR for LGBM and two
out of three for RF. Interestingly, although QR models like RF and LGBM
exhibit superior APS and Winkler Scores, the inclusion of a coverage guarantee
through CP appears to significantly influence financial outcomes. This highlights
the nuanced interplay between model accuracy, interval width, and coverage
assurance in financial performance evaluation. CP approaches demonstrate consistent
performance across all models, highlighting the influence of CP’s coverage guarantee
in ensuring a robust forecasting framework compared to traditional quantile
regression models.

Discussion

Model evaluation in the DAM reveals the intricate interplay between forecast
accuracy, interval width, and financial outcomes. While QR models excel in
accuracy and precision, challenges persist with models like KNN and LEAR,
impacting financial metrics. In contrast, CP methodologies, including SCP, EnbPI,
and SPCI, demonstrate reliability across all models, leveraging coverage guarantees
for robust forecasting. Despite QR’s accuracy, CP’s coverage guarantee influences
financial outcomes, highlighting trade-offs between accuracy, interval width, and
coverage assurance. QR and CP approaches complement each other, enhancing
model performance and decision-making in the DAM.
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6 Conclusion

In this study, we conducted a comprehensive analysis of probabilistic forecasting
models within the dynamic electricity market, focusing on the DAM. Our investigation
encompassed a diverse array of metrics, statistical tests, and financial indicators
to evaluate the efficacy of traditional QR techniques and modern CP adaptations.
CP emerges as a potent approach for bolstering the reliability and precision
of probabilistic forecasts within the DAM. CP’s adaptive methodology addresses
the intrinsic uncertainties of the DAM, offering superior coverage guarantees and
interval width optimization compared to traditional QR techniques. SCP, EnbPI,
and SPCI CP methodologies consistently outperform QR across various quantile
pairs, exhibiting commendable performance in coverage metrics. CP effectively
mitigates the limitations of less accurate models, resulting in substantial forecast
improvements, making it a powerful tool for decision-making in the DAM. However,
traditional QR models demonstrated exceptional accuracy and precision in interval
estimation, underscoring their significance in probabilistic forecasting, despite
challenges with certain models such as KNN and LEAR. Regarding financial
performance, CP methodologies displayed remarkable consistency and reliability,
leveraging their coverage guarantees to ensure robust forecasting frameworks.
Our analysis underscores the complementary roles of QR and CP approaches,
with integrating CP alongside QR promising to advance probabilistic forecasting
in DAM, facilitating more informed decision-making in dynamic electricity markets.
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