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Abstract. Relatively little work in the field of time series classification
focuses on learning effectively from very large quantities of data. Large
datasets present significant practical challenges in terms of computa-
tional cost and memory complexity. We present strategies for extend-
ing two recent state-of-the-art methods for time series classification—
namely, Hydra and Quant—to very large datasets. This allows for
training these methods on large quantities of data with a fixed memory
cost, while making effective use of appropriate computational resources.
For Hydra, we fit a ridge regression classifier iteratively, using a single
pass through the data, integrating the Hydra transform with the pro-
cess of fitting the ridge regression model, allowing for a fixed memory
cost, and allowing almost all computation to be performed on GPU. For
Quant, we ‘spread’ subsets of extremely randomised trees over a given
dataset such that each tree is trained using as much data as possible for
a given amount of memory while minimising reads from the data, al-
lowing for a simple tradeoff between error and computational cost. This
allows for the straightforward application of both methods to very large
quantities of data. We demonstrate these approaches with results (in-
cluding learning curves) on a selection of large datasets with between
approximately 85,000 and 47 million training examples.
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1 Introduction

While some recent work in the field of time series classification focuses on com-
putational efficiency [5,10,11], very little work actually deals with learning effec-
tively from large quantities of data. ‘State of the art’ in the field of time series
classification has come to mean state of the art in terms of accuracy on the
datasets in the UCR archive [7,2,23]. Most of these datasets—at least, most of
those which are commonly used for evaluation—are small. Median training set
size for the 142 canonical univariate datasets is just 217 examples.

This stands in contrast to the datasets commonly used in other domains such
as computer vision and natural language processing. It is not coincidental that,
with some exceptions [18,17], deep learning methods have had a relatively muted



impact on the field. These are generally low bias methods which require large
quantities of training data. The field has also maintained a focus on an ‘apples
to apples’ comparison of compute times based on a fixed amount of compute as a
reference point—typically, a single CPU core [23]—potentially overlooking which
methods are most efficient in practice, given available hardware (e.g., GPUs).

It may be that the ‘bitter lesson’—i.e., that ‘the only thing that matters in
the long run is the leveraging of computation’ [28]—has not yet been learned in
time series classification. It may be that methods for time series classification
which can exploit GPUs will be more useful in practice for large quantities of
data, simply because they are amenable to being implemented in a way that
suits available infrastructure per the ‘hardware lottery’ [15].

Many prominent methods for time series classification are limited by high
computational complexity. In other words, these methods are computationally
bound to relatively small datasets. However, training on very large quantities of
data presents significant practical challenges, even for the most efficient methods,
in terms of both memory complexity and computational cost.

Ultimately, memory does not scale with dataset size. It is impractical to
require arbitrarily large memory in order to train a given model on increasingly
large quantities of data. Further, methods which act on the entire dataset at once
are not necessarily more efficient. For example, in practice, ‘full’ batch gradient
descent is significantly less efficient than stochastic gradient descent.

To this end, we present strategies for extending two recent state-of-the-art
methods (state of the art on the datasets in the UCR archive) for time series
classification—namely, Hydra [10], and Quant [11]—to very large quantities
of data. For Hydra, we train a ridge regression classifier iteratively, integrating
the transform into the process of fitting ridge regression model. For Quant, we
split the data into batches, training a subset of extremely randomised trees on
each batch, ensuring that each tree is trained on as much data as possible within
a given memory constraint.

The rest of this paper is structured as follows. Section 2 covers relevant related
work. Section 3 sets out the strategies for training Hydra and Quant on large
datasets. Section 4 presents experimental results, including learning curves, on
select large datasets.

2 Background

The preeminence of the datasets in the UCR archive as a basis for benchmarking
has meant that the field of time series classification has long been focused on
smaller datasets. The field has not been seriously faced with the challenges and
tradeoffs inherent in learning from very large quantities of data.

Many of the most prominent methods for time series classification have high
computational complexity, requiring significant training time even for relatively
small datasets [23]. However, even the most efficient methods face significant
practical challenges in training on very large datasets in terms of computational
cost and memory complexity.
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Additionally, the bias–variance characteristics of methods currently consid-
ered state of the art in terms of classification error are likely optimised for smaller
datasets, where error is minimised by reducing variance. For larger datasets—
where variance decreases as dataset size increases—error is minimised by reduc-
ing bias [3].

Most of the datasets in the UCR archive are small. It is therefore reason-
able to assume that methods considered state of the art on these datasets are
effective at minimising variance. Methods for minimising variance include ensem-
bling (e.g., ‘hybrid’ methods [22], and methods which use ensembles of decision
trees), explicit regularisation (e.g., methods which use ℓ2 or ‘ridge’ regularisa-
tion), and overparameterisation (e.g., the Rocket ‘family’ of methods [8], and
other methods which combine a very large feature space with a linear classifier,
such as WEASEL 2.0 [27]).

It is as yet unknown which, if any, current state-of-the-art methods are ef-
fective when trained on significantly larger quantities of data, or the extent to
which these methods represent an appropriate balance of performance versus
computational cost on larger datasets compared to, e.g., deep learning methods
trained using GPUs.

2.1 Hydra

Hydra is a recent method for time series classification focused on computational
efficiency. Hydra combines aspects of Rocket and dictionary methods [10].
Rocket transforms input time series using a large number of random convolu-
tional kernels, and then uses the transformed features to train a ridge regression
classifier [8]. Dictionary methods involve counting the occurrence of symbolic
patterns in time series. Hydra combines the two approaches, counting the oc-
currence of random patterns—represented by random convolutional kernels—in
the input time series.

Like other members of the Rocket ‘family’, Hydra uses a ridge regression
classifier for smaller datasets. For larger datasets, it is intended to be used with
logistic regression trained via stochastic gradient descent. In this setting, the
time series in each batch are transformed, and the transformed features are used
to perform an update step. This allows for a fixed memory cost (proportional to
the size of the batch).

However, while reading and transforming the data in batches is memory ef-
ficient, computationally it is potentially very inefficient to repeatedly transform
the same data over multiple epochs. In contrast to, e.g., a conventional convolu-
tional neural network with learned weights, the convolutional kernels in Hydra
(and other members of the Rocket ‘family’) are fixed. One of the main com-
putational advantages of a fixed transform is being able to transform the data
only once, i.e., to avoid the need to repeatedly transform the same data. If the
transform cost is high (e.g., for long time series with a large number of chan-
nels), the time and computational cost spent repeatedly transforming the data
over multiple epochs might well be better spent learning the weights of the con-
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volutional kernels in a conventional convolutional neural network, rather than
training a linear classifier on features produced by a fixed transform.

One approach is to store or cache the transformed features, so that each time
series need only be transformed once [10]. For small datasets, it makes little
difference whether the transformed features are stored or not (as the memory
and computational costs are both small). As dataset size grows, caching the
transformed features becomes more efficient. However, it becomes infeasible to
store the transformed features for arbitrarily large data.

In this context, we present a strategy for training a ridge regression classifier
iteratively with a single pass through the data, integrating the Hydra transform
with the process of fitting the ridge regression model, obviating the need to store
the transformed features.

2.2 Quant

Quant was recently found to be the fastest and most accurate interval method
on the datasets in the newly-expanded UCR archive [23]. Interval methods in-
volve computing summary statistics and miscellaneous other features over sub-
series (intervals) of the input time series [11].Quant uses a single type of feature
(i.e., quantiles), and an ‘off the shelf’ classifier, namely, extremely randomised
trees. Quant has not previously been evaluated on datasets larger than those
in the set of 142 datasets used in Middlehurst et al. [23].

There are various established approaches for training ensembles of decision
trees on very large quantities of data, including training each tree on a subset of
the training data (‘pasting’) [4], a subset of the features (‘random subspaces’),
or a subset of both examples and features (‘random patches’) [20,19].

However, most or all of this work assumes that the ensemble is being trained
directly on the underlying data. Here, however, we need to both read and trans-
form the data using the Quant transform, and then train the classifier on the
transformed data. As such, we encounter a similar tradeoff between memory com-
plexity and computational cost as for Hydra. It is untenable to cache or store
the transformed features for arbitrarily large datasets. It is also computationally
undesirable to repeatedly read and transform the same training examples, even
if the Quant transform is relatively efficient. At the same time, as the results
clearly show, it is desirable to train each tree on as much data as possible: see
Section 4, below. To this end, we present an approach for training different sub-
sets of trees on batches of data, where each batch is as large as possible subject
to memory constraints.

3 Method

3.1 Hydra

The central challenge in extending Hydra (or any other member of the Rocket
‘family’ of methods) to very large datasets is resolving the tradeoff between
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memory complexity and computational cost. We train a ridge regression clas-
sifier iteratively, using a single pass through the data, integrating the Hydra
transform into the process of fitting the ridge regression model. This allows for
‘the best of both worlds’ in the sense that we neither have to repeatedly read and
transform the same data (each training example is read and transformed only
once), or to store the transformed features (the transformed features are used
to update an intermediate quantity used to fit the ridge regression model, and
then discarded). Almost all computation can be performed on GPU. The same
procedure can be used for any other member of the Rocket ‘family’ of methods
(or any other fixed transform). However, Hydra has a significant advantage over
other methods in this context, as discussed further below.

Fitting a ridge regression classifier involves fitting a ridge regression model
where the classes have been encoded as regression targets, i.e., Y ∈ {−1,+1}.
Ridge regression uses a ridge or ℓ2 penalty (given by λ), and has a closed-form
solution [14, 64]:

βλ = (XTX+ λI)−1XTY. (1)

In the present context,X is an n×p feature matrix, representing the transformed
features produced by Hydra, where n is the number of training examples, and
p is the number of transformed features.

p > n In practical terms, for transforms such as Hydra, which produce a
relatively small number of features, where p > n—i.e., where there are more
features than training examples—this implies that the training set is relatively
small. Accordingly, where p > n, we transform the entire training set, compute
XXT, and use the ‘shortcut’ method (via eigendecomposition of XXT) in order
to fit the ridge regression model and estimate LOOCV error for different candi-
date values of the ridge parameter. Computing XXT reduces the n× p feature
matrix to an n × n matrix. This makes the cost of fitting the ridge regression
model proportional to n, regardless of the number of features, when p > n. The
shortcut method has been discussed extensively elsewhere [30].

n ≥ p With respect to (1), both XTX and XTY can be computed iteratively.
This follows from the definition of these two quantities:

XTX =
∑
i

xT
i xi (2)

XTY =
∑
i

xT
i yi. (3)

Accordingly, where n ≥ p, we read the data in batches, transform each batch
using the Hydra transform, and then update XTX and XTY per (2) and (3).
The transformed features can then be discarded. Note also that the ordering of
the data is irrelevant.XTX andXTY are of size p×p and p×k respectively, where
k is the number of classes. This makes the cost of fitting the ridge regression
model proportional to p, regardless of n, where n ≥ p.
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While this approach is applicable to any member of the Rocket ‘family’ of
methods (or, indeed, any fixed transform), Hydra has a significant advantage
in this context. While Rocket, MiniRocket [9], and MultiRocket [29], for
example, all use a fixed number of features (by default, between 10 and 50
thousand), Hydra computes a number of features proportional to time series
length. By default, Hydra produces 512 features per dilation, where dilation is
specified as d ∈ 2{0,1,...,⌊log2 L⌋}, where L is time series length. In other words,
doubling the length of a time series only increases the number of features by 512.
In practice, this means that except in the case of very long time series, Hydra
produces fewer features than the other transforms, and both XTX and XTY
(p× p and p× k respectively) are meaningfully smaller.

As n grows relative to p, using the shortcut method to compute estimated
LOOCV error for different values of λ becomes increasingly less attractive, as it
requires computing quantities which are proportional in size to n (fundamentally,
it requires computing error per example). Accordingly, for n ≥ p, we subsample
a small validation set (being the smaller of 20% of the training set or 8,192
examples) prior to fitting the model. We choose the value of λ which minimises
error on this validation set. (For both the ‘shortcut’ LOOCV procedure and the
separate validation set we perform a grid search over 21 candidate values of λ
across 12 orders of magnitude centred on

√
n.) In order to compute the inverse

of XTX+λI, we compute the eigendecomposition VΣ2VT = XTX. The inverse
is then given by: (XTX+ λI)−1 = V(Σ2 + λ)−1VT.

This procedure assumes that X is centred, and that we fit an intercept term.
It is typical to normaliseX by subtracting the mean and dividing by the standard
deviation. As we are reading the data in batches, we compute the mean and
standard deviation of (the columns of) X, and the mean of Y, as cumulative
averages. This is very similar to batch norm [16]. We then compute:

MX = µT
XµX · n′ (4)

ΦX = ϕT
XϕX (5)

MX,y = µT
Xµy · n′ (6)

Here, µX and ϕX are row vectors representing the mean and standard deviation
of (the columns of) X, and n′ is the size of the training set less the size of the
validation set. (Accordingly, MX and ΦX are matrices with the same shape as
XTX, i.e., p× p.) We then normalise XTX by subtracting MX and dividing by
ΦX (elementwise), and normalise XTY by subtracting MX,y and dividing by
ϕX. The intercept term is µy.

We note that this procedure results in the same model as a ‘full’ ridge re-
gression fit, i.e., (1): it should produce the same model weights and predictions.
However, our approach is both memory and compute efficient, where a ‘full’ fit is
infeasible for very large quantities of data. Importantly, all of these operations—
transforming the input time series, forming XTX and XTY, computing the
eigendecomposition of XTX, fitting the model for different candidate values of
λ and estimating error on the validation set—can be performed on GPU.
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(a) Training set divisible by batch size.
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(b) Training set not divisible by batch size.

Fig. 1. Batch size represents the maximum amount of data which can be read, trans-
formed, and used to train trees for a given memory constraint. We divide the total
number of trees between the batches and train a subset of trees on each batch. (If
training set size is not divisible by batch size, the batches will overlap.) We shuffle the
underlying training data such that each batch represents a random sample.

Multivariate Time Series Multivariate time series consist of time series with
multiple channels, i.e., for a time series Z = (z0, z1, . . . , zL−1), each zi is a
vector of values, zi = (zi,0, zi,1, zi,C−1) for C channels. For multivariate time
series data, we use the original multivariate implementation of Hydra [10]. A
different random subset of between 2 and 8 channels is assigned to each group
of kernels. In effect, each group of kernels is applied to a univariate time series
being the sum of a random subset of channels, with a different subset being
used for each group. Following the distributive property of convolution, i.e.,
X0 ∗ W + X1 ∗ W ≡ (X0 + X1) ∗ W , this is equivalent to applying the same
kernel to each channel in the combination. This is conceptually similar to the
multivariate implementation of MiniRocket [9].

3.2 Quant

ForQuant, we propose reading and transforming the training set in batches, the
batches being as large as possible for a given memory constraint, as illustrated
in Figure 1. We divide the total number of trees between the batches and train
a subset of trees on each batch. For example, for a total of 200 trees (the default
for Quant), for four batches, we assign and train 50 trees on each batch. (The
memory required per time series increases as the number of channels and time
series length increase. For short time series with a small number of channels,
this can result in reading very large batches, whereas for longer time series with
many channels, this could result in smaller batches.) This ensures that: (a) each
tree is trained on as much data as possible (subject to available memory); and
(b) all of the training data is used at least once, while minimising the need
to read and transform training examples. For smaller datasets, this defaults to
simply training all trees on all of the training data. Where training set size is
not divisible by batch size, the batches will overlap. However, the same training
example will appear in at most two batches, so will be read and transformed at
most twice. (This could be further optimised by only reading and transforming
overlapping sections once.) We shuffle the data before forming the batches, such
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that batches smaller than the size of the training set represent approximately
uniform random subsets.

This is effectively a simplified version of ‘pasting’ [4], where we minimise the
number of times each training example is sampled, and maximise the amount
of data used to train each tree. Louppe and Geurts [20,19] find that training
decision trees on subsets of the training examples and/or subsets of features
can produce similar classification error to training an ensemble of decision trees
(e.g., extremely randomised trees) on the entire dataset. This is somewhat at
odds with our results, which suggest that, on large datasets, error is a function
of tree size, and that each tree should be trained on as much data as possible.

A closer examination of the findings in Louppe and Geurts [20] suggests
some potential caveats. The actual differences in classification accuracy between
different methods is small in absolute terms for most of the datasets evaluated.
The largest training set used was comprised of only 35,000 training examples
(with 784 features), i.e., the equivalent of only approximately 100 MB of training
data (assuming float32). Most importantly, for the experiments on the three
largest datasets, ensemble size was reduced and tree depth was limited, meaning
that there is no real comparison to a model with trees trained to full depth on
all the training data.

Pasting was originally proposed in a very different context in terms of the
available computing resources. Nevertheless, the results in Breiman [4] in relation
to pasting appear to be consistent with our results, i.e., that broadly speaking
error is proportional to the quantity of data used to train each tree.

Our results clearly show that model complexity and 0–1 loss on large datasets
are bounded by the quantity of data used to train each tree. There is a clear
tradeoff between performance (0–1 loss) and computational and memory com-
plexity. In terms of minimising 0–1 loss, it is clear that each tree should be trained
on as much data as possible (within memory and computational constraints).
This suggests that, ideally, all trees should be trained on all data, i.e., updating
each tree using the data in each batch or, in other words, separating the question
of memory complexity and batch size. We leave this for future work.

Multivariate Time Series The original implementation of Quant extends triv-
ially to multivariate data, as the quantiles are already computed over each chan-
nel in a multivariate time series. The quantiles computed for each channel can be
reshaped into a single set of features per time series (i.e., combining the quantiles
from all channels). Indeed this appears to be how multivariate data is handled
for the implementation of Quant available in the aeon toolkit [31]. Whether
or not this is an optimal strategy for learning from multivariate data, both in
terms of absolute performance (e.g., 0–1 loss), or computationally (in terms of
the trade off between error and computational complexity), is untested.

4 Experiments

We demonstrate these approaches using five large datasets—MosquitoSound,
Pedestrian, S2Agri, Traffic, and WhaleSounds—with a total of between approx-
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imately 105,000 and 59 million examples. In each case, we use 5-fold cross-
validation (using predefined folds) such that, for each fold, approximately 80%
of the data is used for training and 20% of the data is used for evaluation. Results
presented here in terms of 0–1 loss and training time represent mean 0–1 loss and
mean training time over the cross-validation folds.

We present results for two versions of Quant: (a) with a maximum batch
size of 100 MB; and (b) with a maximum batch size of 1 GB. We compare the
results for Quant and Hydra to results for DrCIF and HInceptionTime on
four of the five datasets. We also present results for the datasets in the UEA
multivariate time series classification archive [1].

Unless otherwise stated, Quant is trained using 4 CPU cores, and Hydra is
trained using GPUs, on a cluster with Intel Xeon Gold CPUs and a mixture of
NVIDIA V100, A40, and A100 GPUs (almost all jobs used V100 GPUs). Both
methods are implemented in Python. Our code is available at: https://github.
com/angus924/aaltd2024.

4.1 Datasets

MosquitoSound , taken from the broader UCR archive, consists of 279,566
(univariate) time series, each of length 3,750, representing recordings of wing-
beats for six different species of mosquito [12]. The task is to identify the species
of mosquito based on the recordings. The dataset has been split into stratified
random cross-validation folds.

Pedestrian represents hourly pedestrian counts at various locations in Mel-
bourne, Australia between 2009 and 2022 [6]. The processed dataset consists of
189,621 (univariate) time series, each of length 24. The task is to identify loca-
tion based on the time series of counts. The dataset has been split into stratified
random cross-validation folds.

S2Agri consists of pixel-level Sentinel-2 data at a 10m resolution [13,26]. The
processed dataset contains 59,628,823 multivariate time series, with 10 channels
(representing 10 spectral bands), each of length 24. This version of the dataset
contains 34 classes representing different land cover types. The dataset has been
split into cross-validation folds based on geographic location.

Traffic consists of hourly traffic counts at various locations in the state
of NSW, Australia [32]. The processed dataset contains 1,460,968 (univariate)
time series, each of length 24. The task is to predict the day of the week based
on the time series of counts. The dataset has been split into stratified random
cross-validation folds.

WhaleSounds consists of underwater acoustic recordings around Antarc-
tica, manually annotated for seven different types of whale calls [25,24]. The
dataset has been processed to extract the annotated whale calls from the origi-
nal recordings. The processed dataset contains 105,163 (univariate) time series,
each of length 2,500, with eight classes representing the seven types of whale call
plus a class for unidentified/ambiguous sounds. This version of the dataset has
been split into stratified random cross-validation folds.
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4.2 Learning Curves

0–1 Loss Figure 2 shows learning curves (0–1 loss) for Quant and Hydra on
MosquitoSound, Pedestrian, S2Agri, Traffic, and WhaleSounds. Figure 3 shows
the corresponding training times for each method. Figure 2 shows that while
Hydra achieves lower 0–1 loss on MosquitoSound, Quant achieves lower 0–1 loss
on Pedestrian, S2Agri, Traffic, and WhaleSounds. (MosquitoSound is comprised
of relatively long time series. The default hyperparameter settings for Quant in
terms of the number of intervals and the number of quantiles per interval may
be suboptimal in this context.) Pedestrian, S2Agri, and Traffic are all similar in
that they are comprised of relatively very short time series. We hesitate to draw
firm conclusions in relation to the relative performance of the two methods on
this sample of datasets.

Figure 2 shows that, for Hydra, 0–1 loss continues to decrease (even if only
modestly) even at the largest training set sizes, with the exception of S2Agri.
(The small ‘uptick’ in error at the largest training set sizes for S2Agri appears
to be due to a shortcoming in the process for determining the regularisation
parameter. We leave the resolution of this point for future work.) We note that
the combination of Hydra and logistic regression may achieve lower 0–1 loss (at
the expense of additional computational and/or memory complexity) as logistic
regression is a more ‘flexible’ model, particularly where n > p. While both
linear models, ridge regression is limited to models satisfying (1), whereas logistic
regression is not. We leave a comparison of the two approaches to future work.
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Fig. 4. 0–1 loss (left), median tree depth (centre), and the ratio of the median number
of leaves per tree to training set size (right) for Quant (for maximum batch sizes of
0.1 GB and 1.0 GB) on MosquitoSound.

Figure 2 shows that, for Quant, 0–1 loss continues to decrease, even at
the largest training set sizes, for Pedestrian and Traffic, but appears to largely
stop decreasing, or decreases much more slowly after a certain point, for
MosquitoSound, S2Agri, and WhaleSounds. This is strongly connected to the
quantity of data used to train each tree (see further below).

Training Times Figure 3 shows the corresponding training times for each
method. In one sense, the training times for Quant and Hydra are not com-
parable, as Quant is trained using CPUs, and Hydra is trained using GPUs.
Ultimately, however, Hydra is able to make use of GPUs for training, whereas
Quant is not (at least as currently implemented). As such, these results provide
an indication of real-world training times for these methods on datasets of this
size. At this scale, it is impractical to train different methods in such a way as
to allow for a direct, ‘apples to apples’ comparison of training times, i.e., by
training each method on a small fixed number of CPU cores.

Figure 3 shows that, for both Hydra and Quant, training time is essentially
linear with training set size. Training times for Hydra are low in absolute terms,
and relatively ‘flat’ on three of the datasets. On this point, training times for
Hydra are affected by the relative size of n vs p (the computational cost of fitting
the ridge regression model being proportional to min(n, p): see Section 3), the
computational cost for the different validation schemes, and the relative expense
of the transform versus the cost of fitting the ridge regression classifier.

For Quant, training time is dominated by the quantity of data used to train
each tree. Once each batch reaches its maximum size (i.e., either 0.1 GB or
1.0 GB), the cost of training the ensemble on more data (but with the same
maximum amount of data per tree) declines.

Model Complexity (Quant) Figure 4 shows 0–1 loss (left), median tree depth
(centre), and the ratio of the median number of leaves per tree to training set
size (right) for Quant, for maximum batch sizes of 0.1 GB and 1.0 GB, on
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Table 1. 0–1 loss for Quant, Hydra, HInceptionTime, and DrCIF.

Quant0.1 Quant1.0 Hydra HInception DrCIF (4h) DrCIF (8h)

MosquitoSound 0.2119 0.1731 0.1304 0.1743 0.2998 0.2394
Pedestrian 0.2115 0.2115 0.3856 0.3319 0.2228 0.2112
S2Agri 0.0675 0.0608 0.0845 — — —
Traffic 0.2508 0.2481 0.4508 0.3345 0.3667 0.3310
WhaleSounds 0.3339 0.2928 0.4092 0.4867 0.3522 0.3207

Table 2. Training times (excluding S2Agri).

Quant0.1 Quant1.0 Hydra HInception DrCIF (4h) DrCIF (8h)

32m 17s 1h 57m 8m 12s 6d 18h 25m 1d 9h

MosquitoSound (for a single fold). Figure 4 also shows results for two different
methods for sampling batches with replacement (‘R1’ and ‘R2’).

Figure 4 shows very clearly that 0–1 loss is closely tied to model size, which
is a function of the quantity of data used to train each tree. More data per tree
allows for training deeper trees which, in turn, results in lower 0–1 loss. In other
words, the quantity of data used to train each tree represents a kind of floor on
0–1 loss. While 0–1 loss continues to decrease modestly after reaching maximum
batch size, there is a clear advantage to simply using more data.

The results are essentially the same when sampling batches with replacement
(equivalent to bagging when training set size is smaller than maximum batch
size and, in the limit, similar to sampling without replacement, to the extent
that the probability of sampling the same object twice from a large set becomes
increasingly small). Here we show two variants of sampling with replacement:
using the same size and number of batches as the default, but sampling each
batch with replacement (‘R1’), and always sampling at least 50 batches (of up
to maximum batch size, i.e., always training 4 trees per batch) and forming each
batch with replacement (‘R2’).

Figure 4 (right) shows that model size grows approximately linearly (train-
ing set size is approximately 5× to 10× the median number of leaves), until
maximum batch size is reached, at which point model size stays essentially the
same, while the quantity of data continues to increase. While the trees become
relatively deep (with a median depth of approximately 28 by 217 training exam-
ples), the actual model size (total number of nodes) is significantly smaller than
a ‘full’ tree of the given depth, i.e., at 217 training examples, for a median depth
of 28, the median node count is just 16,740, i.e., closer to

√
228.

It seems clear that it would be advantageous to be able to continue training
each tree on all data, subject to memory and computational constraints. We
leave this for future work.

4.3 Comparisons with Other Methods

We present a comparison against preliminary results for DrCIF and HIncep-
tionTime on four of the five datasets. (Training DrCIF and HInceptionTime
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Fig. 5. Pairwise 0–1 loss for Quant vs DrCIF (left), Hydra vs DrCIF (centre), and
Quant vs Hydra (right) on 26 datasets from the UEA multivariate time series clas-
sification archive.

on the S2Agri dataset is beyond the scope of this paper.) DrCIF is an interval
method which achieves broadly similar results to Quant on the datasets in the
UCR archive [21,22,23]. HInceptionTime is an ensemble of convolutional neural
network models and represents the most accurate deep learning model on the
datasets in the UCR archive [17,23].

Table 1 shows 0–1 loss for Quant and Hydra versus DrCIF and HInception-
Time for the full training set for four of the five datasets. With one exception,
the results presented here represent mean results over five cross-validation folds.
(Due to time and computational constraints, the results for HInceptionTime on
MosquitoSound represent mean results over two folds.)

Table 1 shows that HInceptionTime achieves lower 0–1 loss than Hydra on
two of the four datasets, but that Quant achieves lower 0–1 loss than HIncep-
tionTime on all four datasets. DrCIF achieves lower 0–1 loss than Hydra on
three of the four datasets, and lower 0–1 loss than Quant on one dataset.

Table 2 shows the total training time for each method (excluding S2Agri),
averaged over the relevant folds. While these times are not directly comparable,
it is clear that the outlier is HInceptionTime. HInceptionTime was trained using
GPUs. DrCIF was trained using a single core per run using two different contract
times: 4h and 8h. (Training runs for DrCIF did not reliably complete when using
multiple threads/cores.) Error is clearly decreasing as DrCIF is allowed more
time to train. Given the similarity between the results for DrCIF and Quant
on the datasets in the UCR archive [23], and the UEA multivariate time series
archive (see below), we expect that, with sufficient training time, 0–1 loss for
DrCIF would at least match that for Quant on these datasets.

4.4 Multivariate Datasets

Results on the datasets in the UEA multivariate time series archive have not
previously been presented for Hydra or Quant. Accordingly, we take the op-
portunity to present such results here, as they serve as a useful reference point
for work involving multivariate time series data. Figure 5 shows pairwise 0–1 loss
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for Quant vs DrCIF (left), Hydra vs DrCIF (centre), and Quant vs Hydra
(right). (Results for DrCIF are taken from Middlehurst et al. [22].) In relation
to Quant, given the relatively small size of these datasets, increasing the batch
size beyond approximately 100 MB makes essentially no difference to the re-
sults (as almost all the datasets are smaller than 100 MB). As such, we show
results for Quant with a maximum batch size of 100 MB (this is essentially
the default configuration). Figure 5 shows that, consistent with recent results
on the expanded set of univariate datasets from the UCR archive [23], 0–1 loss
for Quant and DrCIF is very similar for most datasets. DrCIF achieves lower
0–1 loss than Quant on 19 datasets, but the differences are mostly small. In
contrast, 0–1 loss for Hydra and DrCIF (and, by implication, Quant) is less
correlated. Hydra achieves lower 0–1 loss than DrCIF on 15 datasets, although
DrCIF achieves noticeably lower 0–1 loss on four of the datasets. Total training
time (averaged over 30 folds) is 16 minutes 6 seconds for Quant (CPU), and
1 minute 12 seconds for Hydra (GPU).

5 Conclusion

The field of time series classification has long been focused on smaller datasets.
Even in relation to more efficient methods, very little attention has been paid
to learning effectively from very large quantities of data. Learning from large
datasets requires making effective use of available computational resources, and
operating in a context where dataset size might be considerably larger than
available memory.

We present strategies for applying two state-of-the-art methods—Hydra and
Quant—to large quantities of data. It is clear that in practical terms, Hydra—
trained using GPUs—is considerably faster than Quant (by a large constant
factor), although the difference could be reduced by using more CPU cores for
Quant where possible. However, Quant achieves lower 0–1 loss than Hydra
on four of the five large datasets included in this study.

There are several important limitations to the strategies presented here. The
efficient iterative method of fitting the ridge regression classifier is limited to
linear (ridge) regression models. The additional flexibility of gradient descent
(e.g., for training nonlinear models) is likely to allow for achieving lower 0–1 loss
on larger datasets, albeit with additional computational cost and/or memory
complexity. For Quant, the results show that it is clearly desirable to train
each tree with as much data as possible (subject to compute and memory con-
straints). The quantity of data used to train each tree forms a ceiling for model
complexity and therefore the ability to learn from additional data. Nevertheless,
we hope that the approaches set out here can help to form an efficient baseline
for performance versus computational cost on larger datasets.
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27. Schäfer, P., Leser, U.: WEASEL 2.0: A random dilated dictionary transform for
fast, accurate and memory constrained time series classification. Machine Learning
112(12), 4763–4788 (2023)

28. Sutton, R.: The bitter lesson (2019), http://www.incompleteideas.net/IncIdeas/
BitterLesson.html

29. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.I.: MultiRocket: Multiple pooling
operators and transformations for fast and effective time series classification. Data
Mining and Knowledge Discovery 36(5), 1623–1646 (2022)

30. Tew, S., Boley, M., Schmidt, D.F.: Bayes beats cross validation: Efficient and accu-
rate ridge regression via expectation maximization. In: 37th Conference on Neural
Information Processing Systems (2023)

31. The aeon Developers: aeon. https://github.com/aeon-toolkit/aeon (2024)
32. Transport for NSW: NSW road traffic volume counts hourly. https://opendata.

dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/
bca06c7e-30be-4a90-bc8b-c67428c0823a (2023), CC BY 4.0

16

https://data.aad.gov.au/metadata/AcousticTrends_BlueFinLibrary
https://data.aad.gov.au/metadata/AcousticTrends_BlueFinLibrary
https://zenodo.org/records/5815488
https://zenodo.org/records/5815488
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://github.com/aeon-toolkit/aeon
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a

	Highly Scalable Time Series Classificationfor Very Large Datasets

