
Reservoir Memory Networks:
time-series classification with untrained RNNs

Claudio Gallicchio and Andrea Ceni

Department of Computer Science, University of Pisa
Largo B. Pontecorvo, 3 - 56127, Pisa, Italy

claudio.gallicchio@unipi.it, andrea.ceni@di.unipi.it

Abstract. We introduce Reservoir Memory Networks (RMNs), a novel
class of Reservoir Computing (RC) models designed to enhance long-
term information retention in Recurrent Neural Networks (RNNs) with-
out training the dynamic components. By integrating a linear memory
cell with a non-linear reservoir, RMNs efficiently manage long-term de-
pendencies, a traditional challenge in standard RC approaches. Our em-
pirical analysis on time-series classification and pixel-level 1-D classifi-
cation tasks demonstrate that RMNs not only outperform conventional
reservoir models but also exhibit competitive accuracy compared to fully
trainable RNNs. These results highlight RMNs’ potential as a computa-
tionally efficient alternative for handling complex sequential tasks.
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1 Introduction

Reservoir Computing (RC) [7] is a robust approach in the design of Recurrent
Neural Networks (RNNs), known for its efficiency and minimal training demands.
The core concept involves constructing an RNN architecture where the recur-
rent layer, the reservoir, is initialized with stability constraints and remains
untrained, thereby shifting the training focus solely to the readout layer. This
approach is particularly relevant in the realms of pervasive artificial intelligence
(AI) and neuromorphic hardware implementations [14, 9], where RC facilitates
low-power, high-speed processing, aligning with the goals of sustainable AI. Tra-
ditional RC architectures, however, often struggle with processing sequences in
tasks that require long-range retention of information, a critical capability for
many advanced AI applications.

In this paper, we introduce a novel class of RC systems, the Reservoir Mem-
ory Networks (RMNs), which combine a linear memory cell with a non-linear
processing reservoir. This dual-reservoir approach aims to harness the strengths
of both linear and non-linear dynamics to efficiently manage long-term depen-
dencies, preserving the efficiency of the RC paradigm. The effectiveness of our
proposed method is empirically tested on various time-series classification tasks
and pixel-level 1-D classification, demonstrating significantly improved results



2 C. Gallicchio, A. Ceni

compared to state-of-the-art RC techniques and strong competitiveness with
fully trainable RNN models.

2 Reservoir networks with linear memory cell

In developing RMNs, we build on the Echo State Network (ESN) formalism,
known for its training efficiency in temporal data processing [5, 6]. ESNs, while
effective, are limited by their inherent fading memory property, where infor-
mation dissipates over time due to the asymptotically stable dynamics of the
untrained recurrent layer [4]. RMNs overcome this limitation by combining a
linear reservoir for sustained memory and a non-linear reservoir for complex
processing tasks. This configuration allows RMNs to manage long-term depen-
dencies more effectively than conventional ESNs, which often face a trade-off
between memory capacity and non-linear processing [11].

As in standard RC, the architecture of our proposed RMN includes a fixed
recurrent component, and a trainable feed-forward readout. The key distinction
lies in RMN’s dynamical component, which consists of a dual reservoir system: a
linear reservoir memory cell, and a non-linear reservoir for non-linear processing
over time. Conceptually, the reservoir memory cell should explicitly provide the
system with a long-range temporal context on the external input driving signal,
feeding the operation of the non-linear reservoir, which in turn should focus on
the non-linear processing aspects required by the problem at hand. The state
of the non-linear reservoir is then used as input to the readout component. The
overall architecture of RMN is shown in Figure 1.

Note that our design allows handling the input memorization in isolation from
the non-linear processing, thereby avoiding a classic weakness of conventional
RC models where memory and non-linear processing are tightly intertwined.
Moreover, it allows one to decouple the dimensionality of the non-linear reservoir
from the size of the memory cell. We indicate the number of neurons in the linear
reservoir by Nm, the number of input features by Nx, and the memory state at
time-step t by m(t) ∈ RNm . The memory cell is updated based on the external
driving input signal:

m(t) = Vmm(t− 1) +Vxx(t), (1)

in which Vm ∈ RNm×Nm is a recurrent memory weight matrix, Vx ∈ RNm×Nx

is an input memory weight matrix, and both of them are left untrained after ini-
tialization. The role of Vm is therefore crucial in determining the memorization
abilities of the system. Here we leverage a design strategy based on an orthog-
onal Vm matrix, exploiting the optimal short-term memory properties of this
type of dynamic neural systems [13, 10]. As a specific instance of an orthogonal
weight matrix with fixed weights, we use a circular shift matrix, containing 1s
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Fig. 1. Time unrolled architecture of a Reservoir Memory Network (RMN). The dy-
namical component includes two systems: (i) a memory cell implementing a linear
reservoir driven by the external input, and (ii) a non-linear reservoir system that is fed
by both the external input and the output of the memory cell. The output of the non-
linear reservoir component is fed to the readout component, which is the only trained
part in the architecture.

on the sub-diagonal and on the top-right element, and 0s elsewhere, i.e.,

Vm =


0 0 . . . 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

 . (2)

Note that this construction leads to an eigenvalue spread around the unitary
circle, as shown in Figure 2.
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Vm with circular shift structure (shown for Nm = 100).
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In analogy to conventional RC, the weights in Vx are chosen from a uniform
distribution modulated by an input memory scaling hyper-parameter ωxm

.
The non-linear reservoir is implemented in a similar fashion to a leaky inte-

grator ESN [6]. We indicate the number of non-linear reservoir units by Nh, and
the state by h(t) ∈ RNh . This evolves based on both the external input and the
memory cell state, as follows:

h(t) = (1− α)h(t− 1) + α tanh
(
Whh(t− 1) +Wmm(t) +Wxx(t) + bh

)
, (3)

where Wh ∈ RNh×Nh is the recurrent weight matrix, Wm ∈ R(Nh×Nh is the
memory weight matrix, Wx ∈ RNh×Nx is the input weight matrix, bh ∈ RNh is
the bias vector, and α ∈ (0, 1] indicates the leaking rate hyper-parameter. The
reservoir weight matrix is initialized in line with the echo state property [15], and
then left untrained. Accordingly, its weights are initialized randomly and then
re-scaled to control the resulting spectral radius of Wh, denoted by ρ, which
is treated as a hyper-parameter. The weight values in Wm, Wx, and bh are
initialized randomly from uniform distributions whose extremes are determined,
respectively, by the hyper-parameters of memory scaling ωm, input scaling ωx

and bias scaling ωb.
As an alternative, we implement the non-linear reservoir as in the Euler

State Network (EuSN) [4], a recent RC approach specifically designed to improve
information retention by discretizing an ODE under non-dissipative constraints
using anti-symmetric recurrent weight matrix. In this case, the reservoir state
h(t) is updated as follows:

h(t) = h(t−1)+ε tanh
(
(Wh−WT

h−γI)h(t−1)+Wmm(t)+Wxx(t)+bh

)
, (4)

where ε and γ are small positive hyper-parameters that respectively indicate
the time-step of integration and the diffusion coefficient, and values in Wh are
initialized from a uniform distribution modulated by recurrent scaling hyper-
parameter ωr. We dub this variant as RMNEu.

All weight values in eq. 1, 3 and 4 are left fixed after initialization. Training
is restricted to a recurrent-free readout, implemented as a simple linear dense
layer trained by ridge regression.

3 Experiments

We have experimentally validated the RMN approach on time-series classifica-
tion tasks and on pixel-level 1-D classification. Details on datasets and experi-
mental settings are given in Appendix A.

3.1 Results on time-series classification.

Test set accuracy at dataset level is given in Table 1, while an aggregated com-
parison is provided by Figure 3. Results show a substantial advantage of the
proposed RMN models over conventional RC networks, both under the same
number of overall parameters (subscript p) and the same number of trainable
parameters (subscript tp).



Reservoir Memory Networks 5

Dataset ESNp ESNtp EuSNp EuSNtp RMN RMNEu

Beef 0.55 ±0.02 0.53 ±0.00 0.55 ±0.06 0.42 ±0.05 0.82 ±0.05 0.82 ±0.05

Car 0.70 ±0.00 0.71 ±0.01 0.81 ±0.01 0.80 ±0.01 0.86±0.02 0.85 ±0.04

Coffee 0.98 ±0.02 0.93 ±0.02 0.91 ±0.04 0.93 ±0.00 0.99 ±0.02 1.00 ±0.00

DDG 0.44 ±0.06 0.49 ±0.05 0.48 ±0.04 0.48 ±0.03 0.50 ±0.05 0.56 ±0.05

FordA 0.71 ±0.01 0.70 ±0.01 0.72 ±0.01 0.69 ±0.01 0.88 ±0.02 0.87 ±0.01

FordB 0.63 ±0.01 0.61 ±0.01 0.63 ±0.01 0.64 ±0.01 0.74 ±0.01 0.69 ±0.02

OSULeaf 0.60 ±0.01 0.60 ±0.01 0.61 ±0.02 0.63 ±0.01 0.65 ±0.02 0.67 ±0.02

Meat 0.85 ±0.00 0.85 ±0.01 0.89 ±0.01 0.92 ±0.02 0.93 ±0.01 0.97 ±0.01

Symbols 0.67 ±0.01 0.80 ±0.02 0.81 ±0.02 0.89 ±0.00 0.90 ±0.02 0.89 ±0.01

ShapeletSim 0.49 ±0.01 0.52 ±0.01 0.48 ±0.01 0.51 ±0.04 0.59 ±0.06 0.50 ±0.03

ShapesAll 0.76 ±0.00 0.75 ±0.00 0.80 ±0.00 0.82 ±0.01 0.81 ±0.01 0.80 ±0.01

Wine 0.46 ±0.00 0.43 ±0.02 0.61 ±0.07 0.71 ±0.03 0.80 ±0.03 0.64 ±0.09

Table 1. Test set accuracy on times-series classification tasks. Subscript p: comparison
with the same total maximum number of parameters. Subscript tp: comparison with
the same number of trainable parameters.
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Fig. 3. Critical difference plot summarizing the aggregated scores across all time-series
classification datasets.

3.2 Results on pixel-level 1-D classification.

We ran experiments on the permuted sequential MNIST (psMNIST) task at the
increase of trainable parameters from ≈ 1k to ≈ 150k. The results, presented
in Figure 3.2, clearly demonstrate the efficacy of RMN. At configurations ap-
proximating 150k trainable parameters, RMN not only surpassed ESN’s best
accuracy by over 10% but also outperformed EuSN’s peak performance by more
than 5%. This advantage extends to smaller configurations with approximately
1k trainable parameters, where RMN improved over ESN by more than 24% and
EuSN by over 29%. Furthermore, RMN demonstrated exceptional computational
efficiency. For instance, it matched ESN’s highest accuracy, achieved with ap-
proximately 150k trainable parameters, using merely about 5k, thereby reducing
the required trainable parameters by 96.67%. Similarly, against EuSN’s best per-
formance at approximately 50k trainable parameters, RMN accomplished com-



6 C. Gallicchio, A. Ceni

parable results with a 90% reduction in parameters. As a side observation, in-
corporating non-dissipative dynamics within the nonlinear reservoirs of RMNEu

does not yield performance enhancements over the standard RMN configura-
tion. A broader comparison in the landscape of trainable RNNs is reported
in Table 2. It is particularly noteworthy that our RMN and RMNEu models
demonstrate competitive, and in some cases superior, performance compared to
several fully trainable RNN architectures, despite the dynamical components
of our networks remaining untrained. This underscores the effectiveness of our
architectural choices and highlights the potential of our models to deliver high
accuracy with non-trainable dynamics, challenging the conventional necessity for
extensive parameter training in achieving state-of-the-art results.
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Fig. 4. psMNIST results increasing # of trainable parameters.

4 Conclusions

We have introduced Reservoir Memory Networks (RMNs), a novel integration
of a linear memory cell with a nonlinear reservoir, designed to enhance the han-
dling of long-term dependencies in sequence processing tasks. This architecture
effectively mitigates the inherent limitations of traditional Reservoir Computing,
demonstrating substantial performance enhancements in tasks requiring robust
memory management. RMNs also present a viable, efficient alternative to fully
trainable RNNs, delivering competitive performance while significantly reducing
the training complexity, ideal for computationally constrained environments.
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Model # par. Acc.
coRNN [8] ≈ 134k 97.3%
GRU [12] ≈ 165k 92.4%
NRU [1] ≈ 165k 95.4%
Lip. RNN [3] ≈ 34k 96.3%
LMU [12] ≈ 102k 97.2%
LMU-par [2] ≈ 165k 98.5%
RNN-orth [12] ≈ 165k 89.3%
ESN ≈ 150k 88.0%
EuSN ≈ 50k 92.3%
RMNEu (ours) ≈ 50k 96.8%
RMN (ours) ≈ 150k 98.1%
Table 2. psMNIST results.

A Details on experiments

Here we report additional information on the datasets and experimental settings
used for our experiments described in Section 3.

A.1 Time-series classification

Datasets. We have considered 12 datasets of diverse nature from the UCR
archive (from http://timeseriesclassification.com/), namely: Beef, Car, Coffee,
DuckDuckGeese (abbreviated DDG), FordA, FordB, OSULeaf, Meat, Symbols,
ShapeletSim, ShapesAll, and Wine. For each dataset, we used the original par-
tition into training and test sets.

Experimental settings. We ran experiments with RMN and RMNEu, using
Nh = 500 units in the non-linear reservoir component, and exploring configura-
tions with a number of units in the reservoir memory cell Nm equal to 1/3 T ,
1/2 T , T , and 2 T , where T indicates the maximum length of a time-series
in the training set. The other hyper-parameters were explored in the following
ranges: ωx, ωxm , ωm, ωb, and ωr in {0.01, 0.1, 2, 1, 5}, ρ in {0.8, 0.9, 1.0}, α, ϵ, γ
in {0.01, 0.1, 1.0}. For comparison, we ran the same experiments with ESNs and
EuSNs, exploring the corresponding hyper-parameters1 within the same ranges
indicated above for the RMN variants. As regards the non-linear reservoir di-
mensionality in these latter experiments, we considered two different setups. The
first with Nh = 500, leading to a comparison under equal conditions of trainable
parameters with the RMN variants. This setting is indicated with a subscript tp.
A second experimental setup for ESNs and EuSNs involved exploring a number
of reservoir units varying within a range such that the total number of internal
connections is in the same range as explored for the case of experiments with
RMNs. This second setting led to a comparison under equal conditions of a total

1 For ESN: ωx, ωb, ρ, α. For EuSN: ωx, ωb, ωr, ϵ, γ.
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number of reservoir parameters with the RMN variants, and it is indicated with a
subscript p. In all cases, the readout was applied to the reservoir state computed
at the last time-step of each sequence, and was trained by ridge regression with
Tikhonov regularization hyper-parameter λ, exploring values in {1.0, 0.1, 0.01}.

For each model, hyper-parameters were optimized through model selection on
a validation set, derived by a further stratified splitting 33% / 67% of the training
data, utilizing a random search across 200 trials (or until reaching a maximum
of 10 hours of computation for model selection) and averaging results over 3
random guesses. Following model selection, the selected network configuration
was trained on the entire training set and then assessed on the test set, with
averages and standard deviations calculated from 10 random guesses.

A.2 Pixel-level 1-D classification

Dataset. The permuted sequential MNIST (psMNIST) dataset modifies the
traditional MNIST dataset to test sequence-processing architectures like recur-
rent neural networks (RNNs) on their ability to handle long-term dependencies.
Each 28x28 pixel grayscale image from the standard MNIST dataset, represent-
ing handwritten digits from 0 to 9, is transformed into a 784-step sequence, with
each step representing the normalized intensity of a pixel. A fixed permutation is
applied to the pixel order in all images, adding complexity by dispersing critical
information throughout the sequence. This setup challenges models to maintain
accuracy while processing sequences with significant informational dispersion,
mirroring challenges in practical applications.

Experimental settings. We conducted experiments using four models: RMN,
RMNEu, ESN, and EuSN. Each model varied in the size of its non-linear reser-
voir Nh, tested at sizes 100, 500, 1000, 2000, 5000, 10000, 15000, corresponding
to between 1k to 150k trainable parameters at the readout level. The linear
memory cell in RMN and RMNEu was consistently set at Nm = 784 units.

Hyper-parameters, including ωx, ωxm
, ωm, ωb, and ωr were tested at values

{0.1, 0.5, 1.0}, ρ at {0.8, 0.9, 1.0}, and α, ϵ, γ at {0.01, 0.1, 1}. These were
optimized using a validation set split 33%/67% from the training data through
a random search over 100 trials or up to 10 hours. This model selection was
conducted at the smallest non-linear reservoir setting (Nh = 100) to ensure
robustness; for the baseline EuSN model, optimization occurred at Nh = 1000
to ensure stability across scale variations. After model selection, the best hyper-
parameter configuration was applied to all considered Nh sizes. Each model
was trained on the full training set and evaluated on the test set, with results
averaged over 3 runs. The readout was applied to the non-linear reservoir state
computed at the last time-step, and trained by ridge regression. The Tikhonov
regularization parameter λ was fine-tuned using a nested leave-one-out strategy
on the training data, exploring values in {10−5, 10−4, . . . 104}.
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