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Abstract. We present Kernel-QuantTree Exponentially Weighted Mov-
ing Average (KQT-EWMA), a non-parametric change detection algo-
rithm which combines the Kernel-QuantTree (KQT) histogram as a
model for the data distribution and the EWMA statistic to monitor
multivariate data streams online. KQT-EWMA performs monitoring
without any assumptions on the stationary or post-change distribution
and, most remarkably, it is supported by theoretical results that enable
controlling false alarms by operating at a pre-determined Average Run
Length (ARL0), i.e., the average number of stationary samples monitored
before a false alarm is triggered. The ability to control ARL0, a feature
that is missing in most of the non-parametric change-detection models,
provides flexibility and numerous practical advantages to KQT-EWMA.
Our experiments, conducted on both synthetic and real-world datasets,
demonstrate KQT-EWMA’s ability to maintain a target ARL0 while
achieving detection delays comparable to or lower than existing state-of-
the-art methods designed to work in the same conditions.

Keywords: Online Change Detection · Nonparametric Monitoring ·
Multivariate Data Streams

1 Introduction

Change detection is a frequently faced challenge in data stream analysis, where
the statistical properties of some monitored variable, e.g. a measurement ac-
quired by a sensor, may change over time. In machine learning, changes in data
distribution are known as concept drifts and pose challenges for classifiers and
learning systems in general, requiring continuous adaptation to evolving data-
generating processes.

In many application domains such as industrial monitoring, communication
networks, and computer security, data come in virtually unlimited streams and
need to be monitored online. In particular, each new observation needs to be
processed immediately after being acquired, and must be evaluated considering
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the whole data stream seen so far, while using a limited amount of memory and
performing a fixed number of operations. In this study, we focus on online change-
detection methods for multivariate data streams, which require algorithms capa-
ble of handling multidimensional data within these computational requirements
and storage limitations. Another important challenge is posed by monitoring in
a non-parametric manner, i.e., without any assumption on the initial data distri-
bution. Non-parametric methods are particularly useful in real-world scenarios
where the distribution of data is typically unknown. Unfortunately, most of the
non-parametric change-detection algorithms are designed to monitor univariate
data streams [15]. On top of that, controlling false alarms is a significant concern
when each detected change can trigger costly interventions. Unfortunately, most
online change-detection algorithms for multivariate data streams, particularly
the non-parametric ones, struggle to effectively control false alarms. This paper
addresses both these challenges by proposing a method that is non-parametric
and capable of maintaining a target false alarm rate.

Online change detection monitoring techniques can be grouped into two cat-
egories: one-shot methods, which evaluate fixed-size batches of data points, and
sequential methods, which do not require a fixed sample size and take into ac-
count the whole data stream. QuantTree (QT) is a one-shot non-parametric
solution which, supported by theoretical results, guarantees a pre-set constant
false positive rate (FPR). First presented in [2], QT algorithm defines a his-
togram, partitioning the d-dimensional input space. Non-parametric statistics
can be computed over it, enabling change detection in multivariate data streams
batch-wise. A fundamental limitation of QT is discussed in [12]: its splits are
defined along the space axis, resulting in a hyper-rectangular partitioning that
does not always adhere to the input distribution. To address this problem, a
preprocessing stage is typically introduced to align the split directions to the
principal components of the training set. However, it was observed [12] that
this preprocessing can also worsen the control over false alarms. Hence, Kernel-
QuantTree (KQT), a generalized version of QT which partitions the space using
kernel functions learned from data, was introduced. The increased flexibility of
the histogram in modeling the data distribution results in one-shot monitoring
of multivariate data streams with increased detection power. Moreover, KQT
is invariant to roto-translations of the data set, thus it is invariant to standard
preprocessing techniques such as PCA [12]. However, KQT is a batch-wise mon-
itoring scheme using fixed-size windows and it fails to leverage the knowledge of
the entire data stream distribution, thereby hindering fast detection of changes
in an online scenario.

A sequential version of QT algorithm, QT-EWMA, was presented in [4].
QT-EWMA computes the Exponentially Weighted Moving Average (EWMA)
statistic on a QT histogram, thus considering the entire data stream acquired
up to the current time instant t to monitor the data distribution. Moreover,
QT-EWMA can control the average time elapsed before a false alarm is trig-
gered (ARL0). Although being a truly sequential extension of QT, QT-EWMA
inherits the same weaknesses of its one-shot counterpart.
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We propose Kernel-QuantTree Exponentially Weighted Moving Average (KQT-
EWMA), a novel sequential non-parametric change-detection algorithm for mul-
tivariate data streams that extends KQT to the online scenario, following the
approach of QT-EWMA. The theoretical properties of KQT guarantee that
KQT-EWMA is completely non-parametric since the distribution of our statis-
tic does not depend on the data distribution, hence the thresholds controlling
the ARL0 can be set a priori, as in QT-EWMA. These thresholds guarantee
by design a constant false alarm probability over time, thus a fixed false alarm
rate at any time instant during monitoring.

Our extensive experimental analysis on both synthetic and real datasets
shows that KQT-EWMA outperforms state-of-the-art existing methods, suc-
cessfully extending KQT properties to the online scenario. Specifically, KQT-
EWMA achieves control over the ARL0 at a lower detection delay compared to
competitors. We will show that, by relying on a precise partition of the space,
KQT-EWMA outperforms QT-EWMA in complex scenarios, e.g., when ana-
lyzing data from multimodal distributions.

2 Problem formulation

We consider a virtually unlimited multivariate data stream x1, x2, . . . in Rd where
data samples xt are i.i.d. realizations of a random variable with unknown distri-
bution ϕ0. We define the change-point t = τ as the unknown time instant when
the distribution ϕ0 experiences a change to ϕ1, i.e.:

xt ∼

{
ϕ0 if t < τ

ϕ1 if t ≥ τ.
(1)

We consider a training set TR of N stationary realizations from ϕ0 to be provided
to fit a model ϕ̂0 of the initial distribution.

After estimating ϕ̂0, an online change-detection algorithm typically com-
putes a statistic Tt at each observation xt to assess whether the new sequence
{x1, . . . , xt} contains a change point or not. The decision rule usually involves
checking whether Tt > ht, where ht is a given threshold. The detection time
t∗ is identified as the earliest time instant when sufficient statistical evidence
indicates a change in the distribution, i.e.:

t∗ = min{t : Tt > ht}. (2)

A desirable requirement of change-detection algorithms is that the sequence
of thresholds {ht}t can be set a priori to guarantee a predefined ARL0 = Eϕ0

[t∗],
where the expectation is taken assuming that the whole data stream is drawn
from ϕ0. ARL0, i.e. the average time before a false alarm occurs, is similar to
Type I error probability control in hypothesis testing. The goal is to detect a
distribution change as soon as possible, thereby minimizing the detection de-
lay t∗ − τ , while aiming for an empirical ARL0 that closely approximates the
predefined target value set beforehand.
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3 Related work

Change-detection algorithms are often parametric since they are based on certain
hypotheses about the data distribution ϕ0. As an example, the Change Point
Model (CPM) [15] based on the Hotelling test relies on the assumption that the
initial distribution ϕ0 of data conforms to Gaussian distribution. CPM performs
online monitoring of data streams with theoretical guarantees regarding ARL0

control. It can also detect changes given an unknown non-Gaussian distribution
when implemented with the Lepage statistic [10], but although straightforward
to obtain assurance regarding false alarm control, its descriptive potential for
the data generating process is limited. Another significant limitation of rank-
based statistics, such as the Lepage and Mann-Whitney tests, is their difficulty
in extension to the multivariate case.

A semi-parametric change-detection strategy, Semi-Parametric Log-Likelihood
(SPLL), was presented in [8]. SPLL models the initial data distribution ϕ0 by
fitting a Gaussian Mixture Model (GMM) ϕ̂0 on a training set and then compares
new incoming batches with batches from the training set using a likelihood test.
Since SPLL does not provide a way to set the detection threshold a priori to
control the ARL0, it was combined with CPM [4]. In SPLL-CPM [4], SPLL re-
duces the dimensionality of incoming samples by computing their log-likelihood,
then the resulting univariate sequence is monitored by a non-parametric exten-
sion of CPM leveraging the Lepage test statistic [10]. Again, the main limitation
of both SPLL and SPLL-CPM is the assumption that ϕ0 can be well approx-
imated by a probability distribution of a known family (a GMM), which is not
true in general.

There are only a few other multivariate methods that perform non-parametric
change-detection. Scan-B [9] employs a Maximum Mean Discrepancy (MMD)
statistic and can be configured in order to achieve a target ARL0. However, the
thresholds for this method are defined by analyzing the asymptotic behavior of
ARL0 when the size B of the sliding window is large [9]. Therefore, it cannot
guarantee an accurate ARL0 control. The NEWMA algorithm [7], also based on
MMD, examines the relationship between two EWMA statistics with distinct for-
getting factors. A limitation of this approach is that setting the ARL0 thresholds
requires the known analytical expression of ϕ0. The Kernel-CUSUM [14] algo-
rithm avoids assumptions about data distribution ϕ0, but relies on a truncated
approximation for ARL0, which results in the underestimation of the thresh-
olds [14]. QT [2] and QT-EWMA [4, 5] are histogram-based change-detection
methods having the desirable property that the distribution of test statistics,
defined over bin probabilities, does not depend on the initial distribution ϕ0.
This allows to set detection thresholds a priori via Monte Carlo procedures,
allowing for efficient false alarm control. KQT [12] defines histogram bins via
nonlinear partition of the input space, resulting in a powerful change-detection
algorithm in multivariate data streams. However, as a one-shot method, it cannot
be directly employed for online change detection. Our proposal, namely KQT-
EWMA, aims to extend KQT to the sequential scenario while retaining the
capability of controlling false alarms given a target ARL0 defined beforehand.
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4 Kernel-QuantTree EWMA

We present KQT-EWMA, a novel change-detection algorithm which combines
a KQT histogram [12], used as a model ϕ̂0 of the stationary distribution ϕ0, and
a time-dependent statistic Tt based on an Exponential Weighted Moving Av-
erage [4]. In Section 4.1, we illustrate the KQT-EWMA algorithm, describing
the histogram construction, the threshold computation to control ARL0, and
the online monitoring process. In Section 4.2, we compare the computation com-
plexity of KQT-EWMA against the alternatives considered in the experimental
section. Finally, in Section 4.3 we discuss the limitations of KQT-EWMA.

4.1 The KQT-EWMA algorithm

Algorithm 1 illustrates the training and inference phases of the KQT-EWMA
algorithm. First, the KQT histogram h = {(Sk, πk)}Kk=1 is constructed over the
training set TR ⊂ Rd to match a set of target probabilities {πj}Kj=1 (line 1),
as described in [12]. The histogram construction process consists in iteratively
splitting the input space into K bins defined as sub-level sets of a measurable
function {fk : Rd → R}Kk=1, which measures distances between points and fixed
centroids using a kernel function. We remark that K−1 bins defined by KQT are
compact subsets of Rd. A sample that does not fall into any of these is assigned
to the residual bin, which covers the unbounded remaining part of the space.
We consider the Mahalanobis and the Weighted Mahalanobis (WM) distances as
kernel functions, as in [12], but the properties of KQT hold for any measurable
function projecting a multivariate vector in Rd on a single dimension.

As in [4], KQT-EWMA computes the weighted averages {Zj,t}, which keep
track of the percentage of data stream samples {x1, . . . , xt} falling in each bin
Sj ; to this purpose, we define K binary statistics {yj,t}j as:

yj,t = 1(xt ∈ Sj), (3)

for each j ∈ {1, . . . ,K} and t ≥ 1. As discussed in [4], under the assumption
that the monitored samples xt ∼ ϕ0 are stationary, the expected values of the
binary statistics in (3) can be approximated (line 2) as:

E[yj,t] ≈ π̂j :=
N πj

N + 1
, j < K and E[yK,t] ≈ π̂K :=

N πK + 1

N + 1
. (4)

During monitoring, each incoming sample xt is used to update the weighted
averages {Zj,t} and to compute the test statistic Tt. First, the sample is processed
by the histogram h to obtain the binary statistics {yj,t} (line 6), which in turn
are used to update the weighted averages {Zj,t} (line 7) as

Zj,t = (1− λ) Zj,t−1 + λ yj,t where Zj,0 = π̂j . (5)

The past samples are weighted by an exponential curve which decreases with time
constant λ. The expected value of the Zj,t statistic under ϕ0 approximates π̂j ,
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Algorithm 1: KQT-EWMA
Input: training set TR ⊂ Rd, target probabilities {πj}Kj=1, thresholds {ht}t,

data stream to be monitored x1, x2, . . . , xt, · · · ⊂ Rd

Output: detection flag CD, detection time t∗

1 Construct the KQT histogram {Sj , πj}Kj=1 over TR as in [12]
2 Calculate the expected probabilities {π̂j}Kj=1 as in (4)
3 Initialize the weighted averages Zj,0 ← π̂j for each bin j ∈ {1, . . . ,K}
4 Initialize the detection flag CD ← False and the detection time t∗ ←∞
5 for t = 1 . . . do
6 Compute the binary mask yj,t ← 1(xt ∈ Sj)
7 Update the random variables Zj,t ← (1− λ) Zj,t−1 + λ yj,t, ∀j = 1 . . . ,K

8 Compute the test statistic Tt ←
∑K

j=1(Zj,t − π̂j)
2/π̂j

9 if Tt > ht then
10 CD ← True, t∗ ← t
11 break

12 return CD, t∗

i.e. E[Zj,t] ≈ π̂j for j = 1, ...,K, thus the change-detection statistic is computed
(line 8) as follows:

Tt =

K∑
j=1

(Zj,t − π̂j)
2

π̂j
. (6)

Tt measures the overall difference between the proportion of points in each bin
Sj , represented by Zj,t, and their approximated expected values π̂j under ϕ0,
thus corresponds to the Pearson statistic. The statistic naturally increases as a
consequence of a change ϕ0 → ϕ1 that modifies the probability of at least one
bin. Finally, the statistic Tt is compared against the corresponding threshold ht

to detect a change (line 10).

False Alarms and Threshold computation strategy. KQT-EWMA algo-
rithm inherits from Kernel-QuantTree the fundamental property that the distri-
bution of the statistics in (6) does not depend on ϕ0, so the thresholds {ht}t can
be defined a priori to control ARL0 on any data stream, which is defined as:

ARL0 = Eϕ0
[t∗] =

1

α
. (7)

As explained in [5], to guarantee the constant false alarm probability, the
thresholds must satisfy the following equation:

P(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1. (8)

Moreover, since t∗ is a Geometric random variable with parameter α, the
probability of encountering a false alarm before time t can be determined through
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the geometric sum:

P (t∗ ≤ t) =

t∑
k=1

α(1− α)k−1 = α · 1− (1− α)t

α
= 1− (1− α)t. (9)

We leverage results in [5] which guarantees that, to estimate the thresholds,
one can directly simulate the construction of QT histograms on a training set
TR ∼ ϕ0 of size N by drawing its bin probabilities from the Dirichlet distribu-
tion, (p1, . . . , pK) ∼ D(π1N, π2N, . . . , πKN+1). This approach holds with KQT
given any kernel function, i.e. we can use the same threshold sequences given
any measurable function, including linear split functions, which produce a QT
histogram. Therefore, the same thresholds, computed in a Monte Carlo scheme,
can be used for QT-EWMA and KQT-EWMA to guarantee a constant false
alarm probability over time. The thresholds do not depend on the data distri-
bution ϕ0 nor the data dimension d. The entire simulation procedure must be
repeated when changing the λ parameter of the EWMA statistic, the target bin
probabilities {πj}Kj=1, or the training set size N .

4.2 Computational complexity

Since efficiency is key in online monitoring, we analyze the computational com-
plexity of KQT-EWMA in comparison with QT, QT-EWMA, KQT, and
SPLL, SPLL-CPM, and Scan-B. The results are summarized in Table 1. Fur-
ther explanations can be found in [5, 12]

The training of a KQT given a training set TR of N points comprises i) the
projection of TR by fk, whose cost depends on the specific kernel function, ii)
the computation of the split value, which costs O(N), and iii) the centroid selec-
tion. The cost of computing the Euclidean distance - or other distances based on
lp norms - is O(d), while the Mahalanobis costs O(d2) and the Weighted Maha-
lanobis (WM) costs O(M d2), where M is the number of Gaussian components
fitted to TR and d is the data dimension. The centroid selection criteria is based
on the information gain, which estimate is dominated by the computation of the
determinant of the sample covariance matrix, which costs O(d3). Overall, the
cost of the index computation is multiplied by the number of centroids V tested
during the selection procedure; therefore, an upper bound for the cost of KQT
construction is O(K V (N + M N d2 + d3)) when using the WM distance and
the information gain criteria. During monitoring, the only operation performed
is the projection by fk of the samples, resulting in a cost of O(K M d2) in case
of the WM distance.

4.3 Discussion and limitations

The main limitation of KQT-EWMA is its dependence on the sample covariance
matrix, which estimation is challenging in high-dimensional data streams, requir-
ing an increasing number of samples. In KQT, given any kernel function, the cen-
troid selection criteria is the maximum information gain: the best split lowers the
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Table 1: Training and inference costs of KQT-EWMA with Weighted Mahalanobis
(WM) distance and distances derived from lp norms (e.g. Euclidean distance when
p = 2), compared against the other considered methods. V is the number of centroids
tested to build each bin, M is the number of Gaussian components fit on the dataset,
K is the number of bins, and N is the training set size. As for the other methods, m
is the number of Gaussian components and w is the window length used by SPLL; n
is the number of windows of B samples employed by Scan-B.

Method Training Cost Inference Cost (per sample)

KQT-EWMA (WM) O(K V (N +M N d2 + d3)) O(K M d2)
KQT-EWMA (lp) O(K V (N +N d+ d3)) O(K d)
QT-EWMA O(K N logN) O(K)
SPLL (online) O(mN d2) O(m d+ w logw)
Scan-B N.A. O(n B d)

data entropy [12], which is computed as H(B) = (1/2) log
(
(2πe)d det(cov[B])

)
,

where cov[B] is the sample covariance matrix computed over a set of points B.
Moreover, the sample covariance matrix estimated from the training set TR is
used to define the Mahalanobis and the WM distances. The problem of deter-
mining the minimal sample size N that guarantees that the sample covariance
matrix approximates the actual covariance matrix depends on the data distribu-
tion, as well explained in [13]. Our experiments shows that KQT-EWMA can
lose control over ARL0 when few training points are available.

QT-EWMA-update Algorithm [5] is an effective monitoring scheme when N
is relatively small, i.e. when there are a few training samples, as this estimates
the bin probabilities incrementally as new observations are available, as long as
no changes are detected. While an incremental variant of KQT-EWMA can
be implemented, this would be impractical due to computational and memory
requirements, as it would require re-computing covariance matrices and centroids
(possibly in a high dimensional space) at each update.

5 Experiments

The goal of our experiments is to show that KQT-EWMA controls the false
alarms while achieving state-of-the-art detection delays. To do this, we will show
empirical results obtained on both synthetic and real-world data streams. In
KQT-EWMA, as in QT-EWMA [4], we set the number of bins to K = 32 and
uniform target probabilities πj = 1/K. The exponential decay of the EWMA
statistic is given by a time constant λ = 0.05. To monitor with QT and SPLL
we set the batch size ν = 32 as in [4], and we employ the original configuration of
the Scan-B algorithm [9] (n = 5 windows of B = 100 samples), if not specified
otherwise. We set window length w = 1000 for SPLL-CPM. SPLL is built
fitting m Gaussian components, as specified in the experimental section; KQT-
EWMA is always built fitting M = 4 Gaussian components on the dataset; the
number of centroids tested to build each bin is V = 250.
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5.1 Datasets

Synthetic: As in [5], we generate synthetic data streams in spaces of increas-
ing dimension d ∈ {2, 4, 8, 16, 32, 64}. We use Gaussian distributions ϕ0 with a
random covariance matrix, and then we compute the post-change distribution
ϕ1 = ϕ0(Q+ v) as a random roto-translation of ϕ0. The roto-translation param-
eters Q and v are generated using the CCM framework [3] to guarantee a fixed
distance between the two distributions computed as the symmetric Kullback-
Leibler divergence sKL(ϕ0, ϕ1) ∈ {0.5, 1, 1.5, 2, 2.5, 3}. We expand our analysis
to datasets sampled from bi-modal and tri-modal Gaussians to show the benefits
of the distribution estimation with a KQT histogram for change detection.
Real-world: As in [4], we also test our change-detection method on seven multi-
variate classification datasets of varying dimensionality: El Niño Southern Oscil-
lation (“niño”, d = 5), Physicochemical Properties of Protein Ternary Structure
(“protein”, d = 9), two of the Forest Covertype datasets (“spruce” and “lodge-
pole”, d = 10), Credit Card Fraud Detection (“credit”, d = 28), Sensorless Drive
Diagnosis (“sensorless”, d = 48), and MiniBooNE particle identification (“par-
ticle”, d = 50). We preprocess these datasets from the UCI Machine Learning
Repository [6] as in [4]: datasets are standardized and we sum to each component
of “sensorless”, “particle”, “spruce” and “lodgepole” imperceptible Gaussian noise
to avoid repeated values, which harm the construction of QT histograms. The
distributions of these datasets are considered to be stationary [4]. We randomly
sample the data streams and introduce changes ϕ0 → ϕ1 by shifting the each
distribution by a random vector drawn from a d-dimensional Gaussian scaled by
the total variance of the dataset. We show the analysis of UCI datasets as the
average results obtained over all the datasets.

Our experiments also include the INSECTS dataset [11], which contains d =
33 attributes derived from the wing-beat frequency of various insects, captured
via an optical sensor. This dataset, tailor-made for change-detection techniques,
contains records under diverse environmental conditions impacting insect flight
behaviors. We focus on the abrupt-change variant of this dataset, which includes
five distinct distribution changes ϕ0 → ϕ1 → · · · → ϕ5. We sample data points
from these distributions to build our training set TR and test data streams.
Results obtained over the five changes present in the INSECTS datasets are
averaged and shown all together.

5.2 Figures of merit

Empirical ARL0. To assess whether KQT-EWMA and the other considered
methods control the target ARL0 (see (7)), we compute its empirical value as
the average time before raising a false alarm on data streams we sample from ϕ0.
Empirical ARL0 values are measured on 4000 data streams drawn from ϕ0, given
a target ARL0 taking values in {500, 1000, 2000, 5000}. We generate stationary
data streams of length L = 6 ·ARL0 - the corresponding probability to detect a
false alarm in each sequence is thus P(t∗ ≤ L) ≈ 0.9975, as in [4].



10 O. Nogara Notarianni et al.

500 1000 2000 5000

Target ARL0

500

1000

2000

5000

E
m

pi
ric

al
A
R
L

0

Monomodal

500 1000 2000 5000

Target ARL0

Bimodal

500 1000 2000 5000

Target ARL0

Trimodal

0.06 0.14 0.26 0.45

FA Rate

100

1000

D
et

ec
tio

n
D

el
ay

0.06 0.14 0.26 0.45

FA Rate
0.06 0.14 0.26 0.45

FA Rate

QT-EWMA
Scan-B

KQT-EWMA-maha
KQT-EWMA-weight

SPLL
SPLL-CPM

Fig. 1: Empirical ARL0 and detection delay achieved by the considered methods moni-
toring data streams generated by Gaussian mixtures with increasing number of compo-
nents (1, 2, 3). We show that as the number of components increases, KQT-EWMA
with Weighted Mahalanobis (WM) distance advantage in terms of detection delay in-
creases, achieving in general the lowest delays while controlling false alarms. In all the
experiments, the GMM used to compute the WM distance fits M = 4 components.

Detection Delay. We evaluate the detection power of KQT-EWMA and the
other considered methods by their detection delay, i.e., ARL1 = E[t∗−τ ], where
the expectation is taken assuming that a change point τ is present. Again, we set
the target ARL0 a priori, ARL0 ∈ {500, 1000, 2000, 5000}. Results are averaged
over 4000 data streams of length 6 · ARL0, each containing a change point at
τ = 300. This is a difference compared to the analysis in [4,5], where the average
detection delay is computed at any given target ARL0 on sequences of fixed
length. We use sequences of the same length to estimate detection delay and
ARL0 to achieve a fair comparison between these two quantities.
False Alarm rate. The False Alarms (FA) rate is computed as the number of
alarms raised at some t < τ , averaged over 4000 experiments. By setting the
target ARL0 to {500, 1000, 2000, 5000}, we expect the percentage of false alarms
to be {45%, 26%, 14%, 6%}, respectively, as stated by (9). The target FA rates
are indicated in the plots by vertical dotted lines.

5.3 Results and Discussion

False alarms control. To show the control over false alarms, we plot the em-
pirical ARL0 obtained in our experiments against the target ARL0 set a pri-
ori. We compare results obtained over data sampled from monomodal Gaus-
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Results averaged over UCI+Credit datasets
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Fig. 2: Average empirical ARL0 and detection delay on data streams sampled from the
UCI datasets, excluding the highest-dimensional ones (i.e., "particle" and "sensorless"),
where N = 4096 training samples are not enough for KQT-EWMA based on Maha-
lanobis and WM distances to properly control ARL0. In this setting, KQT-EWMA
with WM distance achieves by far the best performance, halving the detection delay
of QT-EWMA while controlling the target ARL0.

Results averaged over INSECTS dataset (d = 33)
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Fig. 3: Average empirical ARL0 and detection delay on data streams sampled from
the INSECTS dataset [11], with different combinations of initial distribution ϕ0 and
post-change distribution ϕ1. QT-EWMA and KQT-EWMA achieve similar detection
delays, while KQT-EWMA with WM distance struggles in controlling higher values
of ARL0.

sians with the same performance measures computed over multimodal Gaussian
datasets (bimodal and trimodal, in Figure 1, first row). In all the experiments,
the number of components used to fit the GMM and compute the WM distance
is M = 4. QT-EWMA and SPLL-CPM can control all the target values chosen
for ARL0, while in general SPLL and Scan-B struggle in achieving high target
ARL0 ∈ {2000, 5000}. This is true also considering the results obtained with
others real-world data sets (see Figures 2 and 3).

KQT-EWMA can control target values of ARL0, while achieving the lowest
detection delays in these scenarios, given a target FA rate (see Figure 1, second
row). Figure 2 (first row) shows experimental results averaged over data streams
sampled from UCI datasets “protein” (d = 9), “credit” (d = 28), “niño” (d = 5),
“spruce” (d = 10) and “lodgepole” (d = 10) given N = 4096 training points.
We show two high-dimensional datasets (“particle” and “sensorless”, d = 50 and
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Fig. 4: Empirical ARL0 and detection delay on data streams drawn from a Gaussian dis-
tribution in d = 4 dimensions, for varying training set sizes N ∈ {128, 256, 1024, 4096}.
The empirical ARL0 (first row) of QT-EWMA and SPLL-CPM always approaches
the target values (500, 1000, 2000, 5000), while the other methods cannot control the
ARL0. The False Alarm (FA) rates corresponding to the target ARL0 are computed
as in (9) and are shown as dotted vertical lines in the figures (second row). When the
training set size N is sufficiently large (N ∈ {1024, 4096}), KQT-EWMA can control
the FA rate, and achieves the lowest detection delay when using the Mahalanobis or
the WM distance.

d = 48 respectively, see Figure 6) separately, since 4096 training points are not
enough to estimate the sample covariance matrix in high dimensions, and KQT-
EWMA based on Mahalanobis and WM distances do not properly control the
ARL0. In particular, KQT-EWMA with WM distance achieves low empirical
ARL0 values due to the difficulty in fitting a Gaussian Mixture Model in those
settings.

Figure 7 plots the change magnitude sKL(ϕ0, ϕ1) against the detection delay
achieved by the considered methods monitoring Gaussian data sequences with
a target ARL0 = 1000. While all methods successfully control the false alarms,
KQT-EWMA achieves the lowest detection delay, even in this setting where the
parametric assumptions of SPLL are met (number of Gaussian components is
set to m = 1). The advantage of KQT-EWMA over the alternatives is especially
noticeable when the divergence between the pre- and post-change distributions
is low (sKL = 0.5). As expected, the detection delay of all methods decreases
when the change magnitude increases.
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Fig. 5: Empirical ARL0 and detection delay on data streams drawn from a Gaussian dis-
tribution with dimension d ∈ {2, 4, 16, 64}, trained over N = 4096 stationary samples.
The empirical ARL0 (first row) of KQT-EWMA, QT-EWMA, and SPLL-CPM al-
ways match the target, while Scan-B and SPLL fail. However, KQT-EWMA using
the Mahalanobis distance cannot control the ARL0 well when d = 64, as N = 4096
training points are not sufficient to estimate such a high-dimensional covariance ma-
trix. Otherwise, the detection delay (second row) achieved with KQT-EWMA with
Mahalanobis distance is the lowest achieved among the methods controlling the ARL0.

Detection Delay vs False Alarms. To represent the detection power of these
models, we plot the average detection delay against the percentage of false alarms
(FA), which target values are given by target ARL0 values as defined by (9).

Figure 1 (second row) shows that KQT-EWMA with Mahalanobis and WM
distances achieves the lowest detection delay regardless of the number of modal-
ities, alongside Scan-B. However, Scan-B is unable to control higher values of
ARL0, resulting in higher FA rates than the theoretically computed values (9).
Similarly, SPLL also shows a shift towards higher FA rates for the same reason.
This shift is more pronounced in SPLL because it does not perfectly control
ARL0 even at low values, and this behavior is also evident in the results on real
data (Figures 2 and 3). If we compare KQT-EWMA to QT-EWMA, which
has the second-best detection delay values in the Gaussian scenario (Figure 1,
second row), we can observe that KQT-EWMA more than halves the detec-
tion delay of QT-EWMA in the monomodal case, and the difference increases
as the complexity of the underlying distribution rises (bimodal and trimodal
cases). This result is confirmed by all the experiments on both real (Figures 2
and 3) and synthetic (Figures 4 and 5) datasets, suggesting that the histogram
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Fig. 6: Empirical ARL0 and detection delay achieved by the considered methods moni-
toring the two high-dimensional UCI data sets "particle" (d = 48, above) and "sensor-
less" (d = 50, below). The N = 4096 training samples used in these experiments are
not enough for KQT-EWMA based on Mahalanobis and WM distances to properly
control ARL0. Results are averaged over 4000 experiments.

construction strategy of KQT-EWMA, coupled with the Mahalanobis and WM
distances, makes it more sensitive to changes in distribution, thereby achieving
lower detection delays. Figure 5 shows the effects of detectability loss [1]: the
ability to perceive a distribution change diminishes as the data dimensionality d
increases while the distance between pre- and post-change distribution is fixed
(sKL = 1), thus detection delays increase.

Figure 7 reports the relation between the detection delay and the change
magnitude between pre- and post-change Gaussian sequences. We set target
ARL0 = 1000 for all methods. All methods successfully control the false alarms,
and KQT-EWMA achieves the lowest detection delay, even when the para-
metric assumptions of SPLL are met (number of Gaussian components is set
to m = 1). The advantage of KQT-EWMA over the alternatives is especially
noticeable when the divergence between the pre- and post-change distributions
is low (sKL = 0.5). As expected, the detection delay of all methods decreases
when the change magnitude increases.

Our extensive analysis shows that KQT-EWMA consistently achieves the
lowest detection delays across different scenarios. Overall, KQT-EWMA based
on Mahalanobis and WM distances can detect distribution changes more effec-
tively, especially when the complexity of the underlying distribution rises.
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Fig. 7: Detection delay as a function of the magnitude of the change ϕ0 → ϕ1 between
pre- and post-change Gaussian sequences. We set the target ARL0 = 1000. KQT-
EWMA achieves the lowest detection delay, even in the challenging scenario when
the change magnitude is low (sKL = 0.5). As expected, all methods decrease their
detection delays when the change magnitude increases. We remark that the empirical
ARL0 achieved by SPLL and Scan-B is lower than the target.

6 Conclusion and Future Works

We introduce KQT-EWMA, a non-parametric online change-detection algo-
rithm for multivariate data streams based on Kernel-QuantTree [12]. The theo-
retical results underpinning KQT-EWMA [5, 12] guarantee the control of false
alarms independently on the initial data distribution. Our experiments on syn-
thetic and real-world data streams show that KQT-EWMA achieves state-of-
the-art detection delay while effectively controlling false alarms.

In particular, the algorithm can leverage any measurable kernel function and
it is able to fit complex distributions, resulting in high detection power. The
sequences of thresholds can be computed independently on the data distribu-
tion ϕ0, the data dimension d, and the selected kernel function. Moreover, the
monitoring scheme is invariant to roto-translation of the input data (when em-
ploying Mahalanobis and Weighted Mahalanobis distances, as shown in [12]),
thus KQT-EWMA does not require any preprocessing step such as PCA.

Our experimental evaluation also delineates some limitations: while the com-
putational complexity of QT-EWMA scales well with the data dimension d
during both training and testing phases, KQT-EWMA’s computational com-
plexity does not, potentially impacting its practical utility in high-dimensional
scenarios. Additionally, KQT-EWMA relies on the sample covariance matrix,
whose estimation can be poor in high-dimensional scenarios where the train-
ing set TR is not sufficiently large. Nevertheless, our experiments show that
KQT-EWMA achieves excellent performance compared to the other methods
designed for online monitoring, including QT-EWMA, while effectively con-
trolling the false alarms, especially when considering complex data distributions
such as multi-modal Gaussians or real-world datasets.
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In future work, we aim to address the limitations of KQT-EWMA with high-
dimensional datasets. Specifically, we plan to design kernels that do not rely on
covariance matrix computation and are specifically tailored for the sequential
scenario, where high-throughput is crucial.
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