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Abstract. Multivariate Time Series Classification (MTSC) is a ubiq-
uitous problem in science and engineering, particularly in neuroscience,
where most data acquisition modalities involve the simultaneous time-
dependent recording of brain activity in multiple brain regions. In re-
cent years, Random Convolutional Kernel models such as ROCKET and
MiniRocket have emerged as highly effective time series classification al-
gorithms, capable of achieving state-of-the-art accuracy results with low
computational load. Despite their success, these types of models face
two major challenges when employed in neuroscience: 1) they struggle to
deal with high-dimensional data such as EEG and MEG, and 2) they are
difficult to interpret. In this work, we present a novel ROCKET-based al-
gorithm, named Detach-Rocket Ensemble, that is specifically designed to
address these two problems in MTSC. Our algorithm leverages pruning
to provide an integrated estimation of channel importance, and ensem-
bles to achieve better accuracy and provide a label probability. Using
a synthetic multivariate time series classification dataset in which we
control the amount of information carried by each of the channels, we
first show that our algorithm is able to correctly recover the channel im-
portance for classification. Then, using two real-world datasets, a MEG
dataset and an EEG dataset, we show that Detach-Rocket Ensemble
is able to provide both interpretable channel relevance and competitive
classification accuracy, even when applied directly to the raw brain data,
without the need for feature engineering.

Keywords: Multivariate Time Series Classification · EEG · MEG ·
ROCKET Algorithm

1 Introduction

Multivariate Time Series Classification (MTSC) is a topic of increasing interest
as the amount of acquired data and the number of possible applications in science
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and engineering grow over time. MTSC presents a challenging problem because
a Multivariate Time Series (MTS) can exhibit complex patterns that not only
span over time within a single channel, but also over time between multiple
channels.

The standard approach in the Time Series Classification (TSC) literature is
to develop complex architectures aimed at achieving high accuracy on established
benchmarks [3,21,17], with the two most notable being the UCR (University of
California, Riverside) archive for Univariate Time Series (UTS) and the UEA
(University of East Anglia) archive for Multivariate Time Series (MTS) [5,2].
Examples of state-of-the-art models include TS-CHIEF [24], InceptionTime [14],
HIVE-COTE v2.0 [16] and Hydra [8]. While these models are effective, their high
accuracy is typically achieved at the expense of scalability, interpretability and
computational feasibility.

Motivated by the lack of scalable models in the state-of-the-art, the Ran-
dOm Convolutional KErnel Transform (ROCKET) algorithms emerged as a
lightweight alternative to TSC. This novel class of algorithms offers simple archi-
tectures capable of achieving accuracies comparable to much more complex mod-
els. There are three main variants of the ROCKET algorithm, namely ROCKET,
MiniRocket and MultiRocket [6,7,25]. Despite some differences, all of them share
the same core idea. ROCKET works by generating a large number of random
convolutional kernels, which are subsequently aggregated into features and used
to train a ridge classifier [6]. Rather than relying on a learning process that fits
the kernel parameters to the data, ROCKET depends on its extensive number of
random features, with the expectation that some of them will carry information
relevant to the classification task. Moreover, recent study demonstrates that it
is possible to prune features of the model that are not relevant for classification
through a process called Sequential Feature Detachment (SFD) [26]. The authors
showed that the resulting pruned model, called Detach-Rocket, achieves better
accuracy while requiring less than 10% of the original number of features.

The ROCKET algorithm has proven successful in the TSC paradigm, achiev-
ing good performance on the UCR and UEA datasets, as well as other real-world
applications [27]. The linear nature of its classifier helps to prevent overfitting
on datasets with a limited number of instances and enables the model to handle
large datasets efficiently due to its lightweight training scheme. However, there
are two areas where the ROCKET model shows limitations:

– Scalability with number of channels. To deal with MTS, the original
ROCKET algorithm combines all channels for each convolution. This means
that each kernel has L × C + 1 coefficients, where L is the length of the
kernel and C is the number of channels in the input time series. This simple
multivariate strategy faces two problems when C is large. First, the proba-
bility that a randomly sampled kernel will encode meaningful multichannel
information decays rapidly as the number of interacting channels increases.
This means that it will be increasingly difficult for the model to handle
higher order interactions between channels as the number of channels grows.
Second, even when the kernel encodes meaningful information for a subset
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of the channels, the contribution of the remaining channels to this convo-
lution will become an obstacle to classification. These drawbacks have been
partially addressed in MiniRocket and MultiRocket by limiting the number
of channels mixed by each convolutional kernel, thus limiting the maximum
possible order of channel interactions. A downside of this strategy is that
each kernel now includes only a random subset of channels, which for large
C introduces a lot of variability between different realizations of the model
and requires a very large number of kernels to properly sample all possible
channel combinations.

– Interpretability. Despite their simple architecture, ROCKET models are
difficult to interpret. Some of the limitations in this regard are: a) the gen-
erated feature space is very high dimensional, b) there is no built-in way to
have a label probability, and c) in the case of MTSC, there is no easy way to
compute the channel importance (i.e., the relevance of each channel to the
classification task).

These limitations are particularly notable when the models are applied to neu-
ral data. Noninvasive brain activity is typically measured using inherently multi-
variate modalities, such as electroencephalograms (EEG) [4], magnetoencephalo-
grams (MEG) [12], and functional magnetic resonance imaging (fMRI) scans [11].
In most cases, these multivariate time series have a large number of channels
representing either different sensors or regions of interest (ROIs). In addition,
in neuroscience, it is usually important to identify which brain regions are most
relevant for discriminating between the different classes, defined typically as ex-
perimental conditions, groups of participants, etc. Furthermore, when the model
is used for diagnosis, having a reliable measure of label probability is essential
for evaluating the robustness of the classifier and for setting a threshold that bal-
ances the ratio of false positives to false negatives. Thus, even though ROCKET
models have shown some potential for neuroscience tasks [22,20], there are fun-
damental limitations of the methodology that need to be addressed for this type
of data.

In this work, we introduce a novel ROCKET-based model, named Detach-
Rocket Ensemble, specifically designed to address multivariate time series clas-
sification problems. Our methodology involves creating an ensemble of Detach-
MiniRockets, which are pruned MiniRocket models. The ensemble mitigates
model variability [9] and enables the exploration of a much larger pool of kernels
than a single MiniRocket, increasing the probability of finding meaningful inter-
actions between channels. Due to the small size of the pruned Detach-MiniRocket
models, the resulting ensemble is typically smaller than a single MiniRocket.
Another advantage of our model is that, as an ensemble, it provides a built-in
measure of label probability. In addition, by leveraging the pruning process of
Detach-Rocket, we have also developed a straightforward method for estimating
channel relevance for the classification task.

To evaluate the channel relevance estimation of our model, we first designed a
synthetic MTSC dataset for which we are able to control the amount of informa-
tion about the classification label carried by each channel of a multivariate time
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series. We show that our methodology is able to identify the relevant channels
and their relative importance for the classification task.

We then demonstrate the potential of our model on two real-world neu-
roscience applications. The first consists of a face recognition task using 306-
channel MEG data. We show that our model is able to achieve better accu-
racy on this MTSC dataset than previous ROCKET-based models, and is also
able to identify the relevant brain areas for classification, which are consistent
with those found in the neuroscience literature for the same task. The second
is an Alzheimer’s disease classification task using resting-state EEG. We show
that our model significantly outperforms state-of-the-art models designed for
raw EEG classification, achieving an accuracy comparable to that obtained by
applying feature engineering specifically designed for this task. For this classi-
fication task, we compute the ROC curve of our model and select the optimal
threshold, demonstrating the benefits of incorporating a label probability.

The rest of the paper is organized as follows. In Section 2, Background, we re-
view previous ROCKET algorithms relevant to this work, with a particular focus
on Detach-Rocket. In Section 3, Methods, we introduce the Detach-Rocket En-
semble model and the methodology for estimating channel relevance. In Section
4, Synthetic Dataset, we present the results of the synthetic dataset experiment.
In Section 5, Real Datasets, we demonstrate the application of the Detach-
Rocket Ensemble to EEG and MEG datasets. Section 6 contains the discussion,
and Section 7 presents the conclusions of this study.

2 Background

2.1 Random Convolutional Kernel Transform (ROCKET)

The standard ROCKET model use 10,000 random convolutional kernels to com-
pensate for the lack of a training process typically used on architectures such as
Convolutional Neural Networks (CNNs) [1]. These kernels convolute the normal-
ized input time series to extract informative features. To achieve this, the kernel
parameters such as the length, weights and dilation are drawn from random
distributions.

The convolution of each kernel over a time series results in a feature map,
equivalent to a univariate time series that encodes the extracted characteristics.
Each of these feature maps are pooled into two scalars through two operators:
global max pooling, that selects the maximum value, and the Percentage of
Positive Values (PPV), that computes the fraction of values larger than zero.
The 20,000 resulting features fit a classifier, usually based on a ridge regression
model, that yields a label prediction for the given time series.

2.2 MiniRocket

MiniRocket [7] was developed as a faster and lighter version of the original
ROCKET algorithm. This enhanced architecture is more deterministic when
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generating the kernels and also eliminates the max pooling operator, thus relying
solely on the 10,000 PPVs. These modifications simplify the model and yield
slightly superior performance compared to ROCKET in the UCR archive [7].

The MiniRocket parameter selection is fully deterministic, except for the bias
calculation and the channel selection. The set of biases to be used in prediction
is computed after an initial convolution of a subset of input samples, where
each bias is obtained as a quantile from the resulting feature maps. Hence, fully
deterministic biases can be obtained if the full training set is used.

For MTS, MiniRocket chooses for each kernel combinations from 1 up to
9 channels with an exponentially decaying distribution, i.e. convolutions are
more likely to use less number of channels. The channels that are used for each
kernel are chosen with equal probability. In the context of our work, this channel
sampling is crucial for studying the relation between the best performing features
and the channels that generated them, which is key for the interpretability of
MTS.

2.3 Arsenal

The state of the art of TSC is currently dominated by HIVE-COTE v2 [16],
a meta ensemble that aggregates different feature extraction and classification
modules into a single prediction, achieving cutting-edge accuracies [17]. One
of these modules is Arsenal, an ensemble of 25 ROCKET models with 2,000
kernels each. Although Arsenal serves as a component within the full model,
it can function as a standalone classifier. In this case, the algorithm works by
cross-validating every ROCKET model with the training dataset and producing
estimates via soft-voting the predictions, weighted by the scores of each model
during cross-validation. The ensemble methodology aims to improve the predic-
tive power of the classifier as well as giving a probability estimate.

2.4 Detach-Rocket

ROCKET provides a large number of features with the objective of training a
simple linear classifier for a relatively low cost. However, there is no straightfor-
ward method to decide which features are truly relevant, and which ones solely
add undesired complexity or even hinder the classification. A previous study
presented Sequential Feature Detachment (SFD) [26], a novel algorithm that
intends to prune features by keeping the most essential ones (Figure 1). It does
so by iteratively fitting a ridge classifier, pruning a percentage of the features
associated with the coefficients of lesser magnitudes, and fitting it again until
the desired percentage of features is achieved.

In this study, the efficacy of this methodology was evaluated on all binary
classification datasets from the UCR archive. The results demonstrated that a
full ROCKET model could be pruned to 2% of its original features while main-
taining overall classification accuracy [26]. These findings indicate that SFD can
effectively reduce the complexity of a model while enhancing its generalization
capabilities.
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Furthermore, the authors proposed an end-to-end model named Detach-
Rocket that automatically determines how many features should be kept in a
pruned model. This method employs a trade-off hyperparameter c, which weights
the retention of features against the accuracy of the pruned model. As c ap-
proaches 0, greater significance is given to accuracy, while larger values prioritize
maintaining a smaller size. The default value suggested for c is 0.1, which gives
more importance to accuracy and prunes a model down to roughly 1% in mean
according to the tests on the UCR archive.

Fig. 1. Sequential Feature Detachment (SFD) diagram.

3 Methods

3.1 Detach-Rocket Ensemble Model

Motivation. As discussed in the Introduction section, when the number of
channels C of an MTS is high, ROCKET-based models require a larger sample
of convolutional kernels to properly sample the space of possible patterns. One
way to do this is to simply increase the number of kernels in a single model.
While this strategy may be effective, it is computationally inefficient. First, the
forward pass or inference in the model will become slower as the number of
convolutions required increases. Second, for a very large number of kernels, it
will be impossible to fit the entire feature matrix of size (num. instances, num.
features) into RAM, making training either much slower or infeasible.

As a solution to this problem, we introduce Detach-Rocket Ensemble. Instead
of training a single model with a large number of kernels, we propose to train
several standard models and then aggregate them into an ensemble. This makes
the training process both manageable in terms of feature matrix size and trivially
parallelizable, while still enabling the exploration of a large pool of kernels.

A key aspect of Detach-Rocket Ensemble is that it is composed of pruned
Detach models. These pruned models have been shown to achieve the same
classification accuracy as the full model while retaining only 2% of the original
features [26]. Consequently, although a large number of kernels are explored dur-
ing training and pruning, the total number of kernels in the resulting ensemble
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model is comparable to that in a single standard ROCKET, thereby requiring
approximately the same convolutions for inference.

In addition to potentially improving the classification accuracy, an ensemble
model provides a reliable class probability, which is useful to explore different
thresholds that may better suit the classification task. Furthermore, in our case,
the ensemble also helps to achieve a better estimation of channel relevance, as
discussed in the next section.

Model description. A Detach-Rocket Ensemble model is composed of N
Detach-MiniRocket models, which are first trained independently. The train-
ing process for each model follows the procedure described in Section 2.4: Each
MiniRocket is pruned with SFD, using a subset of the training set to determine
the optimal pruning size. Each of the resulting Detach-MiniRockets is then as-
signed a weight in the ensemble according to its performance on the training set.
A schematic of this training process for a Detach-Rocket Ensemble model with
N = 2 number of models is presented in Figure 2.

To perform a prediction on a given instance, the model weights the label pre-
diction made by each Detach-MiniRocket with the corresponding model weight
and generates a normalized label probability. This probability can be subse-
quently thresholded to obtain the final model decision on that instance. The
prediction process for a Detach-Rocket Ensemble model with N = 2 is also
illustrated in Figure 2.

Fig. 2. Methodology of the Detach-Rocket Ensemble, fit (top) and predict (bottom)
with N = 2 models and two classes (A and B). D-Rocket is the abbreviation of a single
Detach-MiniRocket classifier.
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In the present work, we chose Detach-MiniRocket as the base classifier for
our ensemble because it is the fastest ROCKET variant. However, the exact
same methodology can be applied using Detach-MultiRocket, which, given its
stronger solo performance, may yield even better results for some datasets. It
is important to note that, for large C, the variability across the learners arises
mainly from the random subset of channels selected for each of the kernels.
Although it is possible, we do not recommend using the standard ROCKET as
the base classifier due to the reasons discussed in the introduction section and
its slower training time.

3.2 Channel Relevance Estimation

To estimate the feature relevance in a Detach-Rocket Ensemble model, we first
compute it on each of its constitutive base classifiers. The methodology for es-
timating relative channel relevance on a single Detach-MiniRocket is illustrated
in Figure 3 and consists of the following steps:

1. SFD selects the most relevant kernels in the MiniRocket model.
2. The model retrieves the channels that each selected kernel has used.
3. Each channel is given an importance proportional to the weight (θi) of its

kernel divided by the number of channels in the same kernel.
4. The pondered channels are summed and normalized into a relative relevance

histogram.

The pruning process is the essential part of this methodology, as it selects
the relevant kernels and completely removes the irrelevant ones from the channel
importance calculation, which is the majority of them. The subsequent weight-
ing, based on the coefficient of the ridge classifier and the number of channels
involved, is a way to achieve a greater sensitivity in the identification of the
relevant channels. This methodology has been developed and optimized through
a series of tests on a fully controlled synthetic dataset.

Once the relative channel relevance has been computed for all base classifiers,
the resulting channel relevance for the ensemble model is determined by taking
the median of the relevancies obtained for each channel in the base models and
normalizing along the channels. In addition to potentially improving classifica-
tion accuracy, the ensemble mitigates the variability in the base models’ channel
relevance estimates, resulting in a more reliable estimate.

Note that the proposed channel relevance estimation is built-in, meaning
that it does not require additional computation for strategies such as predict-
ing instances with masked channels or retraining the algorithm on a subset of
channels.

4 Synthetic Dataset

4.1 Synthetic Dataset Design

In this first experiment, we created a synthetic time series classification dataset
to test our proposed channel relevance estimation procedure. The goal was to
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Fig. 3. Methodology employed to estimate the relevance of each channel using Detach-
Rocket. In this example, three kernels are applied over a time series comprising five
channels. Subsequently, SFD selects the first and third features, thereby selecting the
first and third kernels. The channels combined by these kernels are then weighted and
accounted for in the computation of the channel relevance histogram.

have a controlled environment where the contribution of each channel to the clas-
sification task is known, so that we can compare the estimated channel relevance
to a ground truth.

To this end, we constructed a four-dimensional binary time series dataset.
This synthetic dataset is designed so that one parameter, theta (θ), controls
how the information for classification is distributed along two of the four chan-
nels. The remaining two channels are noninformative channels used as control.
Specifically, the description of the channel content is as follows: Channels 1 and
2 contain two different sinusoidal waveforms whose amplitude values are rele-
vant to the classification task, Channel 3 contains a sinusoidal waveform whose
amplitude is not relevant to the classification task, and Channel 4 contains no
waveform. All channels also contain additive white noise. Figure 4 (C) presents
a representation of two samples of this dataset, one from each of the classes.

For a given value of theta, the dataset is created by sampling the values of
the sinusoidal amplitudes A1 and A2 in channels 1 and 2 respectively from a
pair of Gaussian distributions, one belonging to each of the two classes. Theta
controls the positioning of these distributions in the parameter plane, the plane
of all possible sinusoidal amplitudes as depicted in Figure 4 (A). See also Figure
4 (B) for a particular sampling instance. The theta angle controls the relative
position of the Gaussian distributions with respect to the amplitude plane, thus
determining the amount of information about the classification task carried by
each of the amplitudes. If theta is 45◦, then the class label information is equally
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theta = 67.5º

A B

C

Fig. 4. Example plots depicting the synthetic dataset. Plot A shows the Gaussian
distributions from which the sinusoidal amplitudes of channels 1 and 2 (A1 and A2)
are sampled, for both classes, in addition to the analytical ideal decision boundary. It
also shows the effect of theta, that shifts the center of the distribution of class 2 around
class 1. Plot B shows a sampling instance of these distributions. Plot C presents one
sample of each class, both unraveled along their 4 channels, after the amplitudes have
been sampled and white noise has been added.

distributed between channels 1 and 2. If theta is zero, then all the information
about the class is carried by channel 2, while if theta is 90◦, all the information
is carried by channel 1.

To estimate the difficulty of this classification task, we calculated the opti-
mal decision boundary, depicted in red in Figure 4 A and B. This determines the
maximum achievable accuracy when classifying in the parameter space, consti-
tuted by the first and second channels amplitudes. The analytical results demon-
strated that, for all values of theta, this accuracy was 84.13%. The complexity
of the actual classification task is much higher, since these amplitude parame-
ters are then transformed into waveforms, two interfering channels are included,
and high-power white noise is added to the time series. Figure 4 C shows two
instances of the synthetic dataset that illustrate the non-triviality of the classi-
fication task.
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4.2 Synthetic Dataset Results

We explored the relevance of the channels for several values of theta ranging from
0◦ to 90◦. For each one of the resulting datasets, we used a Detach-Rocket En-
semble of 25 models with 10,000 kernels each to estimate the channel relevance.
The dataset design is such that the first channel -with a sinusoid of amplitude
A1- is irrelevant when θ = 0◦, and that it increases with theta until it is the only
important channel at θ = 90◦. The opposite happens with the second channel,
with a sinusoid of amplitude A2. While the relevance values of the channels are
not strictly defined at intermediate thetas, they should be equal at θ = 45◦, and
they should monotonically increase/decrease.

In Figure 5, the left plot presents the estimated importance for channels
1 and 2 as a function of the angle theta. The estimation of relevance of the
channels is expressive and captures how the importance shifts from channel
2 to channel 1 when the angle theta changes from 0◦ to 90◦. Note that the
relevance estimates made by the individual Detach-MiniRocket models present
exhibit some variance, but the median of the distributions correctly captures
the expected behavior. This shows how the ensemble nature of the model also
helps to get a better estimate of the channel importance. In Figure 5, the right
plot shows the estimated relevance for all four channels when theta equals 45◦.
It can be observed that, even though the model assigns some relevance to the
unimportant third and fourth channels, it clearly identifies that the first and
second ones are the most important in an equal proportion.

Fig. 5. Box plots of the synthetic dataset channel relevance estimates obtained with
25 Detach-MiniRocket models. The plot in the left shows the estimates of channels 1
and 2 (with sinusoidal amplitudes A1 and A2) along 7 different values of theta. For
a given value of theta, box plots are presented side by side for better visibility. The
right plot shows the estimates for all four channels when theta = 45◦. Both figures
are normalized so that the total relevance value adds up to one, and the orange lines
indicate the median.

This experiment demonstrates that the Detach-Rocket Ensemble provides
an accurate estimate of the channels that are more relevant for classification
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in this controlled environment. However, despite the effectiveness of our syn-
thetic dataset in validating the methodology, it may not fully reflect the perfor-
mance of the algorithm in complex real-world datasets, where factors such as
high-dimensionality and low class separability may limit its ability to properly
estimate channel relevance. In the following section, we illustrate the potential
of our procedure in real-world neuroscience applications.

5 Real-world Datasets

5.1 Face Detection (MEG)

Dataset Description. We first tested our methodology on a MEG dataset
collected and defined in [13] and shared in a Kaggle competition [10]. The data
were acquired with an array containing 306 sensors: one magnetometer and two
orthogonal planar gradiometers at each of the 102 positions across the scalp. The
signals were sampled at 1.1kHz and low-pass filtered with a cut-off frequency of
350Hz. Using this configuration, data were collected from subjects who were
presented with either pictures of faces or pictures of scrambled faces for a du-
ration of less than one second. The proposed task consisted of classifying trials
in which the subject observed a regular face against trials in which the subject
was presented with a scrambled face.

Results. This dataset was used to test the performance of Detach-Rocket En-
semble in terms of both accuracy and channel relevance estimation. To evaluate
its accuracy, we compared it to three other ROCKET-based models: MiniRocket,
Detach-MiniRocket (abbreviated as D-MiniRocket), and Arsenal. To evaluate
the channel relevance estimation, we compared it with previous analysis of rele-
vant brain regions for the same task.

First, a hyperparameter optimization was conducted to determine the num-
ber of kernels that produced the most accurate results for MiniRocket, Detach-
Rocket, and the Detach-Rocket Ensemble. To do this, 3 out of the 16 subjects
present in the train set were used as a validation set on which the scores were
computed, and the remaining 13 were used for training. The Appendix table 2
shows the results for this exploration on all the models. The validation accuracy
showed an overall increase with the number of kernels, capped at 10,000 kernels
in the case of the Detach models, but beneficial up to the maximum number of
explored kernels for MiniRocket (20,000). The best performing strategy in this
initial search was a Detach-Rocket Ensemble with 10,000 kernels.

Given a specific dataset, further optimization of the Detach-Rocket Ensem-
ble may improve the models performance. Some relevant parameters include the
trade-off coefficient c, which tunes the extent to which the model is pruned, and
the number of estimators N , which adds complexity to the ensemble. For this par-
ticular experiment we use c = 0.1, which is the default value for Detach-Rocket,
and N = 25, to match the number of estimators of Arsenal’s architecture.
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We also evaluated the performance of Arsenal on the classification task, but
we had to implement an alternative version using MiniRocket as base model
instead of the default ROCKET. The reason for this was that the large num-
ber of channels present in the MEG dataset makes the default implementation
unfeasible to run in our computational environment.

Finally, we compare the performance over three independent runs of the
four models using the best configuration tested for each of them. The statistical
results of these experiments are depicted in Figure 6 (left). Detach-Rocket En-
semble obtains the best test accuracies among the evaluated models, while also
showing lower overfitting than Arsenal as a consequence of the feature pruning.
On average, the feature detachment process pruned the models down to 6.2% of
their original features. In terms of average training time in our computational
setting, a single MiniRocket model required 9.46 minutes, a Detach-MiniRocket
model required 10.38 minutes, and the entire Detach ensemble required 263.66
minutes.

In Figure 6 (right), we present the results of the channel relevance estimation
using Detach-Rocket Ensemble. To evaluate our methodology, we compared the
results with those obtained in the study from which the data originated [13]. In
that study, the authors used statistical parametric mapping to find brain regions
where MEG activity differed in recordings obtained from participants observing
regular or scrambled faces. They found that the right lateral occipital cortex was
the brain area that showed the most significant differences (see Figure 6, panel
A, for MEG data in [13]). This is precisely the same area that our methodology
highlights as the most important for classification, demonstrating its ability to
correctly estimate channel relevance in a complex high-dimensional real-world
dataset.

5.2 Alzheimer’s Disease Classification (EEG)

Dataset Description. This section employs the dataset presented in [19]. The
dataset comprises EEG recordings from 88 participants. A total of 36 individ-
uals were diagnosed with Alzheimer’s disease (AD), 23 were diagnosed with
frontotemporal dementia (FTD), and 29 were classified as healthy control sub-
jects (CN). The mean age of each group was 66.4 years, 63.6 years, and 67.9
years, respectively. For each participant, the recording was conducted in a rest-
ing state with the eyes closed. The recording device utilized 19 scalp electrodes
(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and
O2) with two reference electrodes (A1 and A2) located on the mastoids. The
preprocessing of these recordings included band-pass filtering within the range
of 0.5 to 45 Hz and artifact correction using the Artifact Subspace Reconstruc-
tion routine (ASR) and Independent Component Analysis (ICA). The recording
montage was referential using Cz for common mode rejection but, during the
preprocessing, the signals were re-referenced to the average value of A1-A2.

Results. In order to evaluate the effectiveness of our model, we compare its
performance with that of the study presented in [18]. The study, authored by
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Model Train (%) Test (%)

MiniRocket
(20k kernles) 80.2±0.2 59.7±1.5

D-MiniRocket 72.2±2.9 60.8±0.5

Arsenal 87.4±0.1 61.5±0.4

D-Rocket
Ensemble 78.6±0.3 64.3±0.5

Fig. 6. (Left) Train and test accuracies (mean ± standard deviation) obtained by
running the optimal models three times. (Right) Mean channel relevance estimates of
the Face Detection task over three Detach-Rocket Ensembles.

the researchers who collected the dataset [19], introduces the Dual-Input Con-
volution Encoder Network (DICE-net), a classifier tailored to classify AD in
this particular data modality. DICE-net employs engineered biomarkers to train
a convolutional and transformer-based architecture. We conducted our experi-
ments on the AD vs. CN classification task, as this is the task on which the
study focuses.

To match the validation methodology used in [18], we employed Leave One
Subject Out (LOSO) cross-validation, conducting the experiment 65 times, one
fold for each of the subjects. This process yielded a set of 65 small confusion
matrices —each obtained by training the model on 64 subjects and predicting the
trials of the remaining one— which were then summed to derive the final results.
In diagnostic tasks of this nature, a careful validation scheme, where trials in the
test set belong solely to subjects unseen during training, is crucial for accurately
evaluating the model’s generalization ability. Table 1 presents the results, using
the same evaluation metrics as in [18]. We split this table in two sections. The
first shows models that require previous feature engineering, including DICE-net.
The second part of this table shows the results for state-of-the-art deep learning
models designed for raw EEG signal classification. Although not specifically
designed for EEG, we include the Detach-Rocket Ensemble in this second part
as it is also use raw EEG as input.

Table 1 shows that our model significantly outperforms all alternatives using
raw EEG data. These deep learning architectures designed for raw EEG signal
classification overfit the training set and fail to generalize, achieving an accu-
racy no better than chance for unseen subjects. In fact, our model performs
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Table 1. AD vs CN scores reported by the models tested in [18] and our of Detach-
Rocket Ensemble (bottom, D-Rocket Ensemble). The table includes both models re-
quiring feature engineering and models using the raw EEG signal. The presented met-
rics are Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), Precision (PREC)
and F1-Score (F1).

Type AD/CN model ACC SENS SPEC PREC F1
Fe

at
ur

e
en

gi
ne

er
in

g

LightGBM 76.28% 76.08% 76.52% 79.67% 77.83%

XGBoost 75.53% 76.08% 74.87% 78.55% 77.29%

CatBoost 75.39% 75.50% 75.25% 76.68% 77.05%

SVM+PCA 73.75% 71.51% 76.46% 78.60% 74.89%

PCA-kNN 72.52% 70.30% 75.19% 77.41% 73.69%

MLP 73.69% 72.98% 74.81% 77.80% 75.31%

DICE-net [18] 83.28% 79.81% 87.94% 88.94% 84.12%

R
aw

E
E

G

EEGNet [15] 41% 47.20% 37.67% 37.89% 42.04%

EEGNetSSVEP [28] 51.46% 56.78% 45.39% 47.65% 51.82%

DeepConvNet [23] 54.21% 45.43% 57.59% 48.71% 47.01%

ShallowConvNet [23] 42.18% 46.50% 41.11% 49.74% 48.07%

D-Rocket Ensemble 79.86% 78.89% 80.47% 74.89% 76.84%

better than most of the models using feature engineering, being outperformed in
accuracy only by DICE-net. Moreover, when implementing majority voting on
subjects’ trial predictions to obtain a class label per subject, our model achieves a
subject-level accuracy of 86.15%, better than the 84.62% obtained by DICE-net
(as inferred from Figure 6 of [18]).

In addition to these results, we also present the Receiver Operating Charac-
teristic (ROC) curve in Figure 7 (left), obtained by sweeping different thresholds
over the predicted class probabilities. We highlight two points on the curve. The
first one corresponds to the scores initially obtained with the default threshold of
0.5. The second one shows the results obtained using the threshold that yielded
the best accuracy, shown -along with the rest of the metrics- in Table 1, which
is slightly better than the one obtained with the default threshold (79.86% in-
stead of 79.80%). Note that this analysis is possible thanks to the existence of a
probability value for the class labels.

Finally, with the LOSO procedure, we obtain 65 different estimations of chan-
nel importance for this classification task. In Figure 7 (right), we present the
estimated channel importance averaged over the 65 folds. This figure demon-
strates the potential of our methodology: without any prior feature engineering,
we can identify the relevant brain areas for Alzheimer’s disease classification in
this dataset in a fully data-driven approach.

6 Discussion

Neuroscience applications typically involve multivariate time series data from a
limited number of subjects with significant intersubject variability. This poses a
challenge for deep learning classifiers, which can easily overfit the raw data and
fail to generalize to subjects not included in the training set, creating a need for



16 A. Solana et al.

Fig. 7. (Left) Receiver Operating Characteristic (ROC) curve obtained by applying
different thresholds (th) over the class probabilities of each trial. (Right) Channel
relevance of the Alzheimer’s Disease classification task estimated by the Detach-Rocket
ensemble.

some form of feature engineering. In this context, simple ROCKET-based models
have the potential to be an effective alternative, but they face some challenges
regarding scalability with the number of channels and interpretability. This study
aims to address these challenges by proposing Detach-Rocket Ensemble.

Similar to Arsenal, our proposed model is an ensemble of ROCKET-based
models. As an ensemble, it has the advantages of reducing overfitting, being
trivially parallelizable, and providing an intuitive label probability. However,
the Detach-MiniRockets used in Detach-Rocket Ensemble are stronger based
models, since they have a larger number of initial kernels and can better handle
high-dimensional MTSC. In addition, after pruning, Detach-Rocket Ensemble
ends up being a smaller model. For example, in the face detection challenge, the
model was left with less than a third of the total kernels used by Arsenal.

One downside of the Detach-Rocket Ensemble is that the iterative detach-
ment process must be conducted as many times as there are base models in the
ensemble, creating an overhead in training time. However, this is compensated by
the substantial reduction in the number of kernels during pruning, which makes
the model require fewer convolutions during the forward pass, thus reducing
inference time.

In future work, we plan to explore the iterative application of the Detach-
Rocket Ensemble for channel pruning. After training the initial ensemble model,
it is possible to use the estimated channel relevance to discard non-informative
channels and then train a new ensemble model on the selected channels. This
approach could improve model performance by providing a better coverage on
the relevant channels. Additionally, it would be valuable to evaluate the Detach-
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Rocket Ensemble, using both Detach-MiniRocket and Detach-MultiRocket, on
the UEA dataset to compare its performance with other non-ROCKET-based
approaches.

7 Conclusion

In this study, we introduce Detach-Rocket Ensemble, an Multivariate Time Series
Classification (MTSC) model that exploits the fast architecture of MiniRocket
and the model size reduction provided by Sequential Feature Detachment (SFD)
pruning. We demonstrate that Detach-Rocket Ensemble is able to handle both
raw EEG and raw MEG data, achieving state-of-the-art performance while im-
proving interpretability by providing built-in channel relevance and label prob-
ability.

Presented alongside a public repository with a user-friendly interface (https:
//github.com/gon-uri/detach_rocket), Detach-Rocket Ensemble represents
a valuable resource for scientists working in the field of multivariate time series
classification, particularly for neuroscience applications.
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8 Appendix

8.1 Face Detection hyperparameter optimization tables

Table 2. Accuracies of several ROCKET variants on the validation set for different
number of kernels. Both Detach-Rocket models use MiniRocket as the base model.

Model Accuracy (%) for number of kernels
1000 5000 10000 20000

MiniRocket 57.45 58.30 61.83 62.05
Detach-Rocket (single model) 57.84 60.58 61.60 61.14
Detach-Rocket 10 model ensemble 59.10 61.83 62.11 61.66
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