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Abstract. Missing values in multivariate time series data, often caused
by network disruptions, device or power outages, and bad weather, can
pose challenges for future analysis. Common statistical methods like mul-
tiple imputation and expectation-maximization are often used to im-
pute missing time series data. However, these methods assume that the
data is missing at random and may struggle with more complex miss-
ing data mechanisms and higher missing ratios. In these cases, advanced
techniques like neural networks may offer improved imputation. This
study assess the effectiveness of two recurrent neural network meth-
ods LSTM and GRU, enhanced with a time decay function, named
LSTM-D and GRU-D, for analyzing missing multivariate time series.
Their performance is compared with three well-known statistical meth-
ods: Bootstrapped-EM, EM-ARIMA, and MICE, across different miss-
ing data scenarios. Results indicate that LSTM-D and GRU-D perform
better than traditional statistical methods for two different datasets, par-
ticularly when the missing data is not random.

Keywords: Time series · Missing data · Imputation · Neural networks
· Statistical methods.

1 Introduction

Time series data, characterized by its temporal nature with each data point
linked to a specific timestamp, enables the analysis of changes over time. Mul-
tivariate Time Series (MVTS) includes two or more variables observed at the
same time steps. This data is used in various domains, such as financial analysis,
healthcare, manufacturing, environmental monitoring, and transportation.

The presence of missing data poses a challenge in the analysis and utiliza-
tion of time series data due to factors such as sensor failures, network issues,
human errors, non-response in surveys, system upgrades, or data storage limi-
tations [34]. Understanding the reasons for missing values is crucial due to their
significant impact on future analysis. According to Rubin [41] Data with miss-
ing values can be categorized into three main groups, known as the missingness
mechanisms. Missing data mechanisms include Missing Completely at Random
(MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR). In
MCAR, missingness is unrelated to any data. In MAR, it depends on observed
data. In MNAR, it depends on unobserved data, making it the most challenging
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and complex mechanism, potentially leading to biases if not properly addressed.
Handling missing data in time series analysis requires careful consideration of
these mechanisms.

Common techniques for handling missing time series data include using com-
plete case and imputation. Complete case or deletion is carried out either list-wise
or pairwise [35], where mainly samples or variables are removed that are only
partially observed. This method leaves gaps in the data set, possibly resulting
in erroneous parameter estimations [22]. Imputation is predicting missing values
based on available data. The choice of method depends on the nature of the
missing data and aims. Many methods have been proposed based on statistical
and Machine Learning models for imputing missing time series data.

Statistical imputation approaches have been mentioned as single imputation
and Multiple Imputation (MI) methods. Single imputation is the process of filling
distinctly one value for each missingness. Methods like mean/median averages
[4], forward and backward imputation [45], or linear regression [53] are the most
convenient single imputation methods that have been used, but there was sig-
nificant bias and loss of precision. Also, the Auto-Regressive Moving Average
Models (ARMA) [9] which is a combination of the basic linear processes, auto-
regressive and moving average model, perform well in forecasting missing time
series data. To address non-stationarity in time series data, Auto-Regressive In-
tegrated Moving Average Models (ARIMA) are effective for imputing missing
values. It is the integrated form of the ARMA that captures temporal patterns
and trends for accurate data reconstruction [29, 6, 38, 2]. The ARIMA model is
used when the dataset exhibit temporal pattern and is of substantial volumes.
However, alteration in observation and model specification leads the model to
be unstable. Multiple imputation proposed by Rubin [33] which replaces missing
values by m ≥ 2 possible values, each with a unique estimate reflecting the un-
certainty attached. The m estimates are combined to yield a single estimate. A
wide variety of approaches based on MI have been proposed such as Expectation-
Maximization (EM) [20], Probabilistic Matrix Factorization (PMF) [36], MI by
Chained Equation(MICE) [49, 54], Bayesian computational algorithm known as
Markov Chain Monte Carlo (MCMC) [49]. Multiple imputation requires certain
conditions to be met: data should be MAR, an appropriate imputation model
should be used, and an adequate number of imputations should be performed to
ensure convergence and address uncertainty.

ML methods like Bayesian network [47], support vector regression [57], and
k-nearest neighbors [1], decision tree [21] have also been applied to the MVTS
imputation problem. These methods are limited in covering complex temporal
dependencies between observations [43]. Recently, various deep learning (DL)
based methods have been introduced that are not only computationally feasi-
ble but also capable of addressing the complex missing data patterns in MVTS.
The Recurrent Neural Networks (RNN) like Gated Recurrent Unit (GRU) [16,
14] and Long Short Term Memory (LSTM) [26, 31] have the ability to repre-
sent temporal dependencies in sequential data and have been widely considered
in analyzing MVTS. Moreover, they can capture long-range dependencies in
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time series data in an effective manner. Che et al., [14] proposed GRU-Decay
(GRU-D) to handle missing values in medical data for classification purposes.
A bidirectional RNN structure, which considers the input sequence in both for-
ward and backward directions, based on LSTM [23] was presented by Cao et al.
instead of the GRU-D to improve training accuracy [12]. Besides bi-directional
RNN, Yoon et al., introduced the multi-directional RNN [58], which performs
imputation across data streams. These models primarily address missingness
in classification rather than prediction tasks. In multivariate time series, each
variable may have different missingness ratios. Continuous and prolonged gaps,
caused by sensor or equipment failures, pose challenges, leading to substantial
information loss in consecutively correlated data. Therefore, a method capable
of accurately reconstructing and analyzing such data is necessary. This study
endeavors to analyze carefully the efficacy of two RNN-based models for impu-
tation and prediction purposes. Specifically, we explore the performance of the
GRU-D model proposed by Che et al. [14], and its extension to LSTM as LSTM-
D. To implement these RNNs, we have used Python4. We have extended the code
for the LSTM-D. Our objective is to compare their reconstruction capabilities
for MVTS against three established statistical methods: the Bootstrapped-EM
algorithm, the EM-ARIMA model, and multiple imputation using MICE, where
we used reference implementations in R to conduct our experiments [59, 50, 56].
To better investigate our goal, we artificially create MAR, MNAR, and Long
Gaps in the data. In the two latter cases, the missing data rate is deliberately
high. In this paper, our primary objectives are outlined as follows:

– Assessing the performance the GRU-D and its extension to LSTM, known
as LSTM-D in reconstructing MVTS under various rates and mechanisms of
missingness.

– Assessing of three widely recognized statistical methods: Bootstrapped-EM,
EM-ARIMA model, and MICE in imputation missing MVTS under various
missing data scenarios.

– Conducting a comprehensive comparison between the performance of the
RNNs and the selected statistical methods.

The rest of the paper is organized as follows. Section 2 gives an overview of
RNN methods and details about LSTM-D as an extension of GRU-D. In Section
3 we present a brief introduction of the considered statistical methods. In Section
4 We implement the methods on air quality data and wind-turbin data. Finally,
the conclusion and future works will be discussed in Section 5.

2 Recurrent Neural Networks for Multivariate Time
Series Imputation

Recurrent neural networks, particularly LSTM [23] and GRU [16, 17] architec-
tures, are instrumental in multivariate time series prediction. LSTM and GRU
4 The contributed source code link is "https://github.com/samirazahmat-kesh/GRU-

D.git"
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are ideal for capturing dependencies in time-ordered data due to their memory
cells and gating units, which address the vanishing gradient problem in tra-
ditional RNNs. These mechanisms enable selective retention and forgetting of
information, crucial for long-term dependencies in time series analysis. They han-
dle variable-length sequences and multivariate inputs effectively, making them
versatile for various time series data. The choice between LSTM and GRU de-
pends on model complexity and dataset characteristics. In essence, both excel in
modeling sequential dependencies and predicting multivariate time series data.

When using RNNs for prediction and dealing with missing values, a straight-
forward approach involves replacing missing observations with the variable mean
or assuming missing values are the same as their last measurement (forward im-
putation). However, these methods can result in loss of variability in the time
series, assuming missing values have the same variability as observed ones, which
may not be true, particularly with abrupt changes or fluctuations. Moreover,
sensitivity to outliers, assuming constant time intervals, and artificially increas-
ing variable correlation can lead to biased estimates. GRU-D, a variant of the
GRU with a decay mechanism, was introduced by Che et al. [14] for clinical
applications with a primary focus on classification tasks. The innovative GRU-D
model improves sequential data analysis in medical contexts by integrating de-
cay mechanisms into the standard GRU architecture. It demonstrates proficiency
in handling missing data in clinical applications. This integration enhances se-
quence modeling and the model’s robustness in managing incomplete or missing
information in real-world medical datasets. An extension of GRU-D to LSTM,
termed LSTM-D, is presented in this paper.

LSTM unit is made of the memory cell, which stores information over periods.
The cell is controlled by three gates: the input gate (i), the forget gate (f),
and the output gate (o). These gates are responsible for regulating the flow of
information into, out of, and within the memory cell. The input gate determines
how much of the new information should be stored in the cell, the forget gate
controls the extent to which the existing information is retained, and the output
gate manages the information to be outputted to the next time step. By carefully
adjusting these gates, LSTM can capture and preserve relevant information over
long sequences, making it a powerful tool for tasks such as natural language
processing, speech recognition, and time-series analysis. An LSTM unit also has a
hidden state represented by ht−1 and ht for the hidden state of the previous time
stamp and the current timestamp, respectively. And has a cell state represented
by ct−1 and ct for the previous and current timestamps, respectively. Hidden
state is known as short term memory, and the cell state is known as Long term
memory.

We denote a multivariate time series with D variables observed at T times
X = (x1, ...,xT )

T ∈ RT×D, thus xd
t is the sample for d-th variable at time t,

and xt = (x1
t , ..., x

D
t ) is the measurement vector at time t for all the variables,

where t = 1, . . . , T and d = 1, . . . , D. The equations for LSTM gates are
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ft = σ(Wfht−1 +Rfxt + bf )

it = σ(Wiht−1 +Rixt + bi)

ot = σ(Woht−1 +Roxt + bo)

c̃t = ϕ(Wcht−1 +Rcxt + b)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ ϕ(ct)

where σ and ϕ stand for activation functions which often are considered sig-
mid and tanh, respectively. Wf ,Wf ,Wf , Rf , Ri and Ro are the relevant weight
matrices, bf , bi, bo and b are the bias vectors, and all of them are as the model
parameters. The cell architecture for LSTM is shown in Fig 1(a). To effectively
address missing values in MVTS, LSTM-D employs a dynamic decay mecha-
nism, adept at capturing temporal dependencies and mitigating the impact of
incomplete data. To denote which measurement is missing or observed, we define
a masking matrix M with the same dimension of X with the elements md

t as:

md
t =

{
1 xd

t is observed
0 otherwise

(1)

To track missing values for each variable in X, the last time interval is main-
tained in a matrix ∆ ∈ RT×D with elements δdt ∈ R as

δdt =


st − st−1 + δdt−1, if t > 1,md

t−1 = 0

st − st−1, if t > 1,md
t−1 = 1

0, if t = 1

(2)

where st are the time stamps relative to each measurement. A vector of decay
rates, γ is defined as

γt = exp{−max(0,Wγδt + bγ)}, (3)

Wγ and bγ are also the model parameters. This decay rate will be applied to the
input as γx and to the hidden state as γh. Thus the input valus are updated as

xd
t ← md

tx
d
t + (1−md

t )γ
d
xtx

d
t′ + (1−md

t )(1− γd
xt)x̃

d (4)

where xd
t′ is the last observed value and the x̃d is the empirical mean of d-th

variable. Also, to capture better the information of missingness, the previous
hidden state ht−1 is decayed before computing the new hidden state ht as

ht−1 ← ht−1 ⊙ γht. (5)

Moreover the masking vectors (mt) are fed directly into the model. Thus, the
modification of LSTM with decay mechanism as LSTM-D will be with the fol-
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lowing equations over the cell memory and all the gates:

ft = σ(Wfht−1 +Rfxt + Vfmt + bf )

it = σ(Wiht−1 +Rixt + Vimt + bi)

ot = σ(Woht−1 +Roxt + Vomt + bo)

c̃t = ϕ(Wcht−1 +Rcxt + Vmt + b)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ ϕ(ct)

where Vf , Vi and Vo are the new added parameters. Fig 1(b).

(a) (b)

Fig. 1: The architecture of LSTM and LSTM-D cell

3 Well-known Statistical Methods for Multivariate Time
Series Imputation

Various methods for multivariate time series imputation have been introduced,
including regression-based, auto-regressive, and Bayesian approaches. These meth-
ods provide robust solutions for handling missing data in complex temporal
datasets by leveraging statistical relationships and dependencies among vari-
ables. In our study, we focus on three effective methods: Bootstrap-based EM,
EM-ARIMA, and MICE, which we briefly introduce here.

3.1 Bootstrap-Based EM

In general, the Bootstrap-based EM algorithm draws m (the number of impu-
tation datasets) samples of size n (the size of the original dataset) from original
datasets, and point estimates of mean and variance are performed in each sam-
ple using the EM method. Let X = (x1, ...,xD)T ∈ Rn×D be the data matrix
with observed part Xobs and unobserved part Xmis and has a multivariate nor-
mal distribution as X ∼ ND(µ,Σ). Also, It is assumed data are MAR. Similar
to Section 2, Let M be the missingness mask matrix. Under MAR assumption
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p(M |X) = P (M |Xobs), then the joint distribution of Observed data and mask
can be broken up as

p(Xobs,M |θ) = p(M |Xobs)p(Xobs|θ)

As the inferences are based on the complete data parameters, the likelihood can
be written as

L(θ|Xobs) ∝ p(Xobs|θ)

which can be rewritten using the law of iterated expectations [42] as

L(θ|Xobs) ∝ p(Xobs|θ) =
∫

p(X|θ)dXmis.

The main computational difficulty in the analysis of incomplete data is taking
draws from this posterior. The EM algorithm [20] is a simple computational
approach to finding the mode of the posterior. Bootstrap-based EM algorithm
combines the classic EM algorithm with a bootstrap approach to take draws from
this posterior. For each draw, the data are bootstrapped to simulate estimation
uncertainty and then the EM algorithm is run to find the mode of the posterior
for the bootstrapped data, which gives fundamental uncertainty too [24]. After
drawing the posterior of the complete-data parameters, imputations take place
by drawing values of Xmis from its distribution conditional on Xobs and the
draws of θ. Remember there are m sets of estimates. Then each set of estimates
is used to impute the missing observations from original dataset. The result is
m sets of imputed data that can be used for subsequent analyses.

3.2 EM-ARIMA

As the previous section, let xt be the tth realization of a D-variates time series.
If l components of xt are unobserved, then it can be rearranged and divided in
two missing and observed parts, which are denoted by xt = (xtm,xto). Also It
is assumed X is of multivariate normal distribution with mean µ and covariance
matrix Σ. Then they also can be partitioned as following:

µ̃t =
[
µ̃tm µ̃to

]
and Σ̃t =

[
Σ̃t(mm) Σ̃t(mo)

Σ̃t(om) Σ̃t(oo)

]
.

The method is proposed by Junger and Leon [25], and is a modification
of EM algorithm [20]. In the imputation algoritm, first the missing values are
replaced by some initial estimates and the the parameters µ and Σ are estimated.
Then, the level for each of the uni-variate time series is estimated by ARIMA
model, and finally re-estimate the missing values using updated estimates of the
parameters and the level of the time series. These steps are iterated until some
convergence criterion is reached. At the (k+1)-th iteration of the E (estimation)
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step of the EM algorithm, the missing values are imputed with conditional means
given the observed values and the previous estimates of the parameters given by

x̃
(k+1)
tm = E

[
xtm| xto, µ̃

(k)
t , Σ̃

(k)
t

]
= µ̃

(k)
tm + Σ̃

(k)
t(mo)Σ̃

(k)
t(oo)

(
xto + µ̃

(k)
to

)
.

In the M (maximization) step, the revised maximum likelihood estimates of µt

and Σt are computed. As we mentioned, The temporal contribution to the level
of each time series µt is independently estimated using ARIMA model [7].

3.3 MICE

A popular approach for implementing multiple imputation is sequential regres-
sion modeling, also called multiple imputation by chained equations (MICE) [39,
11]. The basic idea in MICE is imputing missing values in one variable from a
regression of the observed elements of it condition on the other variables. Let
X = (x1, ...,xD) be the data matrix consists of D variables. Each variable may
be partially observed so we divide the vector of each variable into two parts:
observed (obs) and missing (mis) as xd = (xobs

d ,xmis
d ). The imputation problem

is to draw the unconditional multivariate distribution of X from P (X). Let n
denote an iteration counter, one may repeat the following sequence of Gibbs
sampler iterations:

For x1 : draw xn+1
1 from P (x1|xn

2 ,x
n
3 , ...,x

n
D)

For x2 : draw xn+1
2 from P (x2|xn+1

1 ,xn
3 , ...,x

n
D)

...

For xD : draw xn+1
D from P (xD|xn+1

1 ,xn+1
2 , ...,xn+1

D−1)

where means condition each time on the most recently drawn values of all other
variables the candidate variable is imputed. This can be performed for l time until
convergence. All the procedure will be repeated m times, yielding m imputed
sets which then the best imputed set can be selected based on an appropriate
criterion. Using l = 10 typically yields satisfactory results. It is standard to use
generalized linear models as the basis of the predictive draws, but other kind of
models also have been applied. the details about specification of the imputation
model or monitoring convergence can be found in references [11, 10].

4 Results and Discussion

In this section, we first introduce the data used in the experiment and explain
how to implement different scenarios of missingness in them. Then the obtained
results in imputation missing data with two RNNs and three statistical methods
are presented. Finally, we have a comprehensive discussion about the results and
the future works.
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4.1 Experiments

In this study, we employed two distinct datasets: air quality data and wind-turbin
data. Air quality data [52] is used as the basis for our analyses, while the wind-
turbin data (from kaggle.com), was utilized to independently confirm and ensure
the robustness of our findings, enhancing the reliability and generalizability of
our research.

The air quality data set contains 8784 instances of hourly averaged responses
from an array of 5 metal oxide chemical sensors embedded in an Air Quality
Chemical Multi-sensor Device. The device was located on the field in a signif-
icantly polluted area, at road level, within an Italian city. Data were recorded
from March 2004 to March 2005 (one year) representing the longest freely avail-
able recordings of on field deployed air quality chemical sensor responses. The
dataset consists of the hourly averaged of ten air quality variables. In this study,
we have chosen five of them for our prediction and imputation purpose, which are:
PT08.S1 (tin oxide, which is nominally CO targeted) PT08.S2 (titania, which
is nominally NMHC5 targeted), PT08.S3 (tungsten oxide, which is nominally
NOx targeted), PT08.S4 (tungsten oxide, which is nominally NO2 targeted)
and PT08.S5 (indium oxide, which is nominally O3 targeted). As the amount of
missing values are limited, we have imposed artificially two missing data mech-
anisms MAR and MNAR, and also, we have created long gaps during the data
so that every variable is missing for consecutive days of a month or more. In
order to create MAR in each variable with specific missing rate p, we generated
a random binary matrix M as Eq (1) with probability of being zero equal to p
and probability of being one equal to 1-p for each md

t . Then we replace xd
t with

NA wherever md
t = 0. To creat MNAR in the data with different missing rates,

we considered the median of each variables in X and if xd
t be the observation of

dth variable at time t then:

xd
t =

{
Missing if xd

t > a+ c ∗median

Observed otherwise
(6)

We considered (a,c) equal to (-0.1,1), (0,0.9), (-0.1,1), (0,1) and (-0.1,1) for
variables CO, NMHC, NOx, NO2 and O3 respectively. Furthermore, to insert
long gaps in the data, we chose randomly some periods for each variable and
replaced the data with NAs. In the event of Long Gaps, some points are also
MAR inherently. In Tbl 1 the rates of missing data in each variable under the
specific type of missingness are reported.

The second dataset, wind-turbin data, consists of measurements of 19 vari-
ables from Jan 2018 to Mar 2020 of a wind turbine, at a 10 minute frequency.
Here, we use data from Jan 2018 to Dec 2018, with a total 52704 observation.
We use four variables "Active Power","Ambient temperature","Wind direction"
and "Wind Speed" as input features. There are missing variables in all vari-
ables, but in order to fulfill the assumption of MNAR with higher missing rates,
5 Non-methane Hydrocarbons
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we manipulated the data similar to air quality data and created MNAR with
missing rates 57, 58,79 and 67 percent respectively in "Active Power","Ambient
temperature","Wind direction" and "Wind Speed" variables.

Variable Missing Rates(% ) Missing type
CO 40

NMHC 57.7
NOx 36.5 MAR
NO2 14
O3 28
CO 70.5

NMHC 63.2
NOx 64 MNAR
NO2 53.2
O3 60.2
CO 49.6

NMHC 64.5
NOx 42.5 Long Gaps
NO2 34
O3 41.3

Table 1: Missing rates of air-quality dataset variables for different kind of miss-
ingness.

It is worth to note that we normalize the time series data in each dataset
before using it in each method. We do this by using max-min normalization,
which scales all the variables to a range between 0 and 1. The parameters for
LSTM-D and GRU-D model are set as: learning rate=0.01, batch size=64, opti-
mizer=Adam, Epoch=1000 and time step=10. The EM-bootstrapping algorithm
has been implemented via a multiple imputation with m=2000 iterations and
ultimately the imputation with least error has been selected. We have consid-
ered EM-ARIMA model with several Parameter values for p,d and q, eventually
ARIMA(1,1,1) was selected and reported here. The performance of each method
is reported in aspect of the averaged mean absolute error (MAE) and averaged
mean square error (MSE) in Tbl 2, where each one is calculated as follow:

MAE =
1

n

n∑
i=1

|yi − ŷi|,

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

4.2 Results

In MAR case the accuracies of all the methods are very close to each other and
near zero, so that they cannot be distinguished and all of them are doing well. In
MNAR case, the results show the better performance of LSTM-D and GRU-D,
with a significant difference in the MAE and MSE values compared to statistical
methods. In Long Gaps Case, the two RNN methods performs again better. Of
course, it cannot be concluded that this superiority is very high compared to
statistical methods. In this case, among statistical methods, EM-ARIMA model



Title Suppressed Due to Excessive Length 11

has better performance with lower MSE and MAE, and is doing as well as LSTM-
D and GRU-D. Therefore, according to what we checked, considered RNNs are
more capable of handling non-random missingness and long gaps than the well-
known statistical methods, although this issue requires further investigation in
other applications and in the case of other patterns of missingness. Since, the
results for all the variables are equivalent, we have chosen "O3" and plot the
real data and imputed data together in Fig 2 and 3. Obviously, the imputed
data is almost identical with real data for LSTM-D and GRU-D methods, but
for the three statistical methods especially with EM-Bootstrap and MICE, in
some periods compliance has not been achieved.

Method Train MSE Test MSE Test MAE Missing Type
GRU-D 0.029 0.030 0.139
LSTM-D 0.048 0.048 0.187

EM-Bootstrap - 0.161 0.184 MAR
EM-ARIMA - 0.030 0.074

MICE - 0.163 0.186
GRU-D 0.071 0.067 0.176
LSTM-D 0.058 0.060 0.152

EM-Bootstrap - 1.605 1.033 MNAR
EM-ARIMA - 1.642 1.005

MICE - 1.690 1.047
GRU-D 0.033 0.033 0.137
LSTM-D 0.024 0.025 0.118

EM-Bootstrap - 0.256 0.267 Long Gaps
EM-ARIMA - 0.081 0.184

MICE - 0.279 0.282

Table 2: Result of different methods in reconstruction air-quality data-set vari-
ables, under three type of missingness assumption

(a) LSTM-D (b) GRU-D

Fig. 2: Reconstruction (prediction) of the variable O3 in MNAR case with LSTM-
D and GRU-D.

Furthermore, the MAE and MSE of different methods for reconstruction
Wind-Turbin data variables are reported in Tbl 3. The two RNNs performs
almost similarly, and among statistical methods EM-ARIMA performs better.
It can be seen that the error of the two RNNs is much less than the statistical
methods.
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(a) EM-Bootstrapping (b) EM-ARIMA

(c) MICE

Fig. 3: Reconstruction (prediction) of the variable O3 in MNAR case with sta-
tistical methods: EM-ARIMA, EM-Bootstrap and MICE methods.

Method Train MSE Test MSE Test MAE
GRU-D 0.028 0.029 0.077
LSTM-D 0.029 0.030 0.080

EM-Bootstrap - 2.174 1.179
EM-ARIMA - 1.403 0.939

MICE - 2.334 1.229

Table 3: Result of different methods for reconstruction Wind-Turbin data vari-
ables

4.3 Discussion

In this paper we compared the performance of two modified RNNs (LSTM-D
and GRU-D) and three statistical methods for imputing missing multivariate
time series (MVTS) data. The study focused on different missingness scenarios:
Missing At Random (MAR), Missing Not At Random (MNAR), and Long Gaps,
which were artificially applied to the data. In tests with air quality data, the
RNNs generally performed better than statistical methods, particularly as the
missing ratio increased, with MNAR showing significant improvement. Then, to
ensure the stability of the result, we experimented on the wind turbine data and
the results confirmed the superior performance of the RNNs as well.

Many time series data exhibit both temporal and spatial dependencies, known
as spatio-temporal data. Traditional methods like KNN-based methods [15, 48],
EM [20], singular value decomposition [46], random forest [8] often treat spatial
and temporal dimensions separately. Oversimplified methods can lead to sub-
optimal results, especially with complex, dynamic scenarios and significant miss-
ing values in spatio-temporal data. Various statistical and ML/DL approaches
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have been proposed to address these challenges by leveraging spatial and tem-
poral correlations to improve missing data for classification or prediction [5, 51,
28, 44, 18, 32, 19, 30].

DL methods can generate accurate predictions by leveraging complex missing
data mechanisms and dependencies but have flaws [3]. Despite their power, DL
methods have limitations in statistical modeling for spatial and spatio-temporal
data due to substantial uncertainties caused by inherent variability such as mea-
surement errors or natural fluctuations, data gaps, mismatched prediction sup-
ports, and sampling. They also do not directly estimate prediction or classi-
fication errors and struggle to incorporate known mechanistic relationships in
spatio-temporal data.

That is problematic when one is attempting to use the output from these
models to make decisions, it is challenging as it is not obvious how much reliable
the output is. Also, a more troubling issue is that most DL methods are "black
boxes" and it is difficult to know why they are producing the prediction or
classification that they do, meaning that their internal workings are not easily
interpretable or explainable by humans [40].

In opposite, in traditional statistical models, such as linear regression, it is
relatively easy to interpret the impact of each variable on the model’s output.
One can understand how changes in input variables relate to changes in the
output. However, the main issue with these methods is that there may be cases
where they are not sufficient to capture the broad nature of spatial non-linearity
and complex features inside data. In some cases, data may exhibit complex mul-
tivariate features, non-Gaussianity, non-stationarity, and MNAR or any complex
missingness patterns. Considering these cases, the spatio-temporal estimation of
continuous variables could be a challenging task. DL models allow one to identify
the patterns in the complex datasets and to make estimations/predictions based
on them. The key feature of the DL models is that they learn from the data,
and they do not require rigid statistical assumptions (such as stationarity and
linearity) [55].

In order to mitigate the shortcomings of each of the DL-based and statistical-
based methods, there has been an increasing number of works in recent years,
that take a hybrid approach for analyzing different kinds of data where spatio-
temporal data were not exempted, for example: [27, 37, 13]. These hybrid models
borrow some of the effective ideas from each DL methods and statistical models
in order to facilitate modeling the data, produce uncertainties for model outputs
and enhance the interpretability of DL methods. Thus, they strike a balance
between predictive accuracy and the ability to understand and trust the model’s
decisions. Despite promising efforts, our investigation reveals a significant gap in
the availability of a hybrid framework that ensures high prediction/imputation
accuracy, model-based uncertainty quantification, and explainability for missing
spatio-temporal data across various applications. As a hypothesis, the fusion
of DL methods with classical statistical models may offer an attractive way
forward. Since this issue has not been addressed in the literature, working on
developing a novel hybrid method in the case of complex missingness patterns
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and mechanisms in spatio-temporal data is in our future work plan. We intend to
present a comprehensive and hybrid model that in one hand uses the advantages
of statistical methods to model the missing process and the measurement process
together so that it is possible to explain the relationships between variables and
missingness processes altogether in a spatio-temporal model framework with the
ability of uncertainty quantification, and on the other hand, by using a suitable
neural network, the complexities in the spatio-temporal data can be modeled
with the aim of prediction/imputation with higher accuracy.

Conclusion

This study demonstrates that GRU-D and LSTM-D, modified RNN methods
with a decay mechanism, outperform traditional statistical methods (Bootstrapped-
EM, EM-ARIMA, and MICE) in reconstructing missing multivariate time series
data, especially under high rates of missingness with MNAR or long gaps. Sta-
tistical methods have been used over the years and can produce interpretable
results and quantify uncertainties, while deep learning methods do not have this
ability due to being "black boxes" [3]. Our study paves the way for our fu-
ture research, aiming to develop a hybrid framework combining deep learning
and statistical methods. This approach will seek to enhance the neural networks-
based method’s effectiveness in handling missing data with complex correlations,
including spatio-temporal data.
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