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Abstract. Time series forecasting has a rich research history, with a
variety of use cases across diverse domains. Many machine learning and
deep learning forecasting algorithms approach the problem as regression
by windowing. Given a univariate time series Y = (y1, ..., yr), a training
set of input-output pairs (z;,y;) is constructed where the input window
i = (Yi—p+1,...,yi) contains the most recent p observations, and the
target variable z; is a future value y; 15, with h as the forecasting horizon.
We call this approach time series forecasting regression (T'SFR).
Recently, an alternative type of problem, time series extrinsic regression
(TSER), has been described. In TSER, each training instance is a com-
plete time series X; C R, assumed independent of the others, paired
with an external response variable z; C R. Unlike TSFR the response
is not a future point of the same series but an exogenous variable to
be predicted from the overall dynamics of the series. An archive of 63
TSER datasets was released in 2024. Our aim is to bridge the gap be-
tween TSER and TSFR by providing a common framework for both.
We reformat a selection of diverse series used in forecasting research as
TSER problems through windowing and create train/test splits. We then
compare state-of-the-art TSER algorithms on these data and benchmark
them against standard statistical and deep learning approaches. We find
that the pattern of results seen on the TSFR archive does not mirror
that on the TSER data. We propose a simple reformulation that allows
the best TSER algorithm to achieve performance equivalent to statistical
forecasters.

Keywords: Time series forecasting; time series regression; time series machine
learning

1 Introduction

Forecasting time series has a rich and deep research history. There are a huge
number of variations of use cases across diverse application domains. There are
three main strands to the research into algorithms for forecasting: statistical, ma-
chine learning and deep learning, although there is a large degree of overlap [13].
One distinguishing feature is that a large number of the machine learning and
(non-generative) deep learning forecasting algorithms reduce the problem to re-
gression through windowing to form a training set collection of time series where
a case is a historical window of the series to be forecast and the response variable
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is a number of steps ahead based on a forecasting horizon. We call this approach
time series forecasting regression (T'SFR) to differentiate it from an alternative
time series regression formulation, time series extrinsic regression (TSER). In
TSER, the problem is the same as traditional regression, except the explanatory
variables are an ordered series of data equivalent to a time series. Each time
series is assumed to be independent rather than windowed, and the response
variable is not a future value of the series but an external variable. For example,
one problem (BarCrawll6) in the archive is to predict how drunk someone is
based on their motion. The explanatory variables are a time series of motion
data (the coordinates derived from a wearable device) and the response/depen-
dent variable is the blood alcohol level of the subject. Each case is a separate
recording on one of 13 subjects. The data was originally published in [I4] and
donated to the UCI archivdl

Although TSER is not itself a forecasting problem, the two formulations are
closely connected. If we treat each window of past observations in a forecasting
task as an independent series, then the prediction target (a future value) becomes
just another external response variable. This shows that TSFR can be seen as
a special case of TSER, where the “extrinsic” response happens to be a future
continuation of the same process. Establishing this link provides the intuition for
why TSER methods might be effective for forecasting and motivates our attempt
to assess TSER methods for the specific case of forecasting.

The TSER problem was introduced in 2019 [24] with a collection of 19 prob-
lems. The archive was recently expanded to 63 problems from a range of domains
including economics; energy, environmental and equipment monitoring; and sen-
timent analysis [11]. A range of new time series machine learning (TSML) algo-
rithms were proposed based on algorithms from the more mature field of time
series classification (TSC). These regressors follow a pipeline model of time series
specific unsupervised transform to tabular format followed by a standard regres-
sion algorithm. Two TSML algorithms, FreshPRINCE [17] and DrCIF [20] were
found to outperform a wide range of statistical and deep learning approaches on
this TSER archive.

Standard regression techniques perform well on regression problems, with
comparative studies often finding they outperform much more complex tech-
niques. For example, it is observed in [22] that “when considering Ranks, the
(non-deep) machine learning methods LinearRegression and RandomForest (RF)
outperform all competitors”.

Our hypothesis is that regressors designed specifically for time series may be
more effective than linear regression, Our aim is then to assess the effectiveness
of TSER algorithms at TSFR. Forecasting is a huge research field with over 100
years of research. According to web of scienceﬂ there were over 28,000 papers
matching the keyword forecasting in 2024 and over 300,000 since 1970. It is also
growing in popularity: 12,000 papers were recorded in 2015. For context, ap-
proximately 3000 matched the term TSC and just 7 for TSER in 2024. TSML is

! https://perma.cc/7VP5-79LN
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a relatively new field, and our goals in relation to forecasting must be realistic.
We constrain our attention to operational rather than strategic forecasting [13].
We select a set of forecasting problems with characteristics we think are most
suitable for TSML algorithms: relatively long series and a single step ahead fore-
casting horizon. We then evaluate a range of algorithms on these problems and
compare performance with standard forecasting metrics, using classical statisti-
cal forecasters and standard deep learning algorithms for comparison.

We find that, for this scenario, no algorithm outperforms the benchmark
naive forecasting strategy of predicting the last observed value. However, when
we reformulate the problem so that the regressor predicts the change from the
previous value (rather than the actual next value) the best TSER regressors
outperform both naive forecasting and standard regression based algorithms
such as XGBoost. The remainder of this paper is structured as follows. Section
describes the forecasting problems we use in experiments. Section [3| introduces
the forecasting algorithms we evaluate, with more detail on standard statistical
forecasters aimed at a machine learning audience. We present our results in
Section[dand analyse performance in Section 5] before concluding and describing
future direction.

2 Forecasting Datasets

There are a very large number of forecasting datasets used in research and a
range of forecasting competitions [16]. The Monash forecasting repository [10]
contains hundreds of thousands of time seried’] These are used in evaluations
that typically aggregate performance over a hundreds of thousands of series with
different characteristics to produce a single performance metric [l]ﬂ Our goals
are more modest: we constrain our attention to series we believe are best suited
to TSER and adopt a transformation/evaluation approach aligned with TSER.

2.1 Selection Criteria

We select 99 long time series and focus on one-step-ahead forecasting, due to
computational constraints. When selecting datasets for our evaluation we are
guided by the fact that we want to assess algorithms with specific data char-
acteristics but without domain constraints. We prefer longer time series since
we believe more complex models have more potential in this context. We use
the Monash forecasting repository [10]E| as our starting point for datasets. We
then select all series containing over 1000 data points. We do not want too many
similar series. We filter out most energy demand/production datasets, and other
weather datasets, since a portion of the mixed datasets will most likely contain
weather-related data. We focus on univariate series only, because the TSER re-
search has yet to address the multivariate case in detail. Of the remainder, we

3 https://forecastingdata.org/
* https://huggingface.co/spaces/Salesforce/ GIFT-Eval
® https:/ /forecastingdata.org/
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select 99 series at random for our preliminary evaluation. Table [1| shows the
different categories of the time series used in this study.

Category

Number of Series

Series

Demographic

10

m4_daily_dataset_T{1604-1607}
m4_monthly_dataset_T{26710}
m4_weekly_dataset_T{224-227}
us_births_dataset_T{1}

Energy Demand

10

australian_electricity_demand_dataset_T{1-3}
elecdemand_dataset_T{1}, electricity_hourly_dataset_T{1-3}
london_smart_meters_dataset_without_missing_values_T{1-3}

Energy Production

solar_10_minutes_dataset_T{1-5}
wind_farms_minutely_dataset_without_missing_values_T{1,3-5}

Finance

10

m4_daily_dataset_T{2036,2037,2041}
m4_monthly_dataset_T{37009,37070,37238,37248}
m4_weekly_dataset_T{60-62}

Industry

10

m4_daily_dataset_T{1614,1615,1634,1650}
m4_monthly_dataset_T{27138,27170,27175,27186}
m4_weekly_dataset_T{55,56}

Macro

10

m4_daily_dataset-T{1,2,6}
m4_monthly_dataset_T{122,145,180,186}
m4_weekly_dataset_T{19-21}

Micro

10

m4_daily_dataset_T{130,131,145}
m4_monthly_dataset_T{17051,17088,17132,17146}
m4_weekly_dataset_T{248-250}

Other

10

kdd_cup-2018_dataset_without_missing_values_T{1}
m4_daily_dataset_T{3595,3597}
m4_hourly_dataset_T{170-172}
m4_monthly_dataset_T{47915}
m4_weekly_dataset_T{1,2}
sunspot_dataset_without_missing_values_T{1}

Transportation

10

pedestrian_counts_dataset_T{1-5}
traffic_hourly_dataset_T{1-5}

Weather

10

oikolab_weather_dataset_T{1-4}
saugeenday_dataset_T{1}
weather_dataset_T{1-5}

Table 1. Quantity of datasets from each field used in this study

2.2 Dataset Formatting

All series are taken from the Monash Forecasting Archive [I0] in their .tsf format
and formatted to be compatible with the aeon toolkit [I8] which contains imple-
mentations of the TSER algorithms we use in evaluation. For practical purposes,
we truncate each series to a maximum length of 10,000. We then split the series,
using the first 70% of points to form the training data, with the last 30% being
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the test data. We transform the single series train and test data into aeon col-
lections through windowing: we slide a 100 data point long window along each,
using the first 99 as the regressors and the last variable as the response. We do
this independently for the train and test partitions. Thus, for a series of 10,000
points, we generate collections of 6900 train cases and 2900 test cases. There is
no overlap between the training and test sets at all.

This is an unusual formulation for forecasting and significantly restricts the
information available to the regressor. Firstly, we do not produce predictions for
the first 99 observations in the test series. We do this to ensure the train and
test are completely independent. Secondly, we use the same model to predict
the 100th test point as we do to predict the 3,000th. This is in contrast to the
more commonly adopted strategies of giving all the data prior to the test point
or adopting a direct or recursive strategy. In regression terms, we are making
the standard assumption that there is no concept drift, i.e. that the underlying
generative model does not change. However, for forecasting, we are assuming a
prediction horizon from 100 to up to 3000, which is an unusual formulation.

We do it this way to make the problem as simple as possible to phrase as
a TSER problem and to avoid any contamination between train and test data.
In future work we will further bridge the gap to forecasting by looking at more
commonly used formulations. In later experiments we compare to statistical
models where this formulation does not work, since they are designed to predict
only on time step ahead after being fitted. For these experiments we give the
statistical models an advantage by giving the algorithm access to all the data
prior to the test data point and producing a one ahead prediction. We do this
as refitting a model for every test point would be computationally prohibitive,
whereas with this formulation we can simply roll the models forward to produce
predictions.

One advantage of the approach of making non overlapping train and test
collections of series is that it makes reproducibility easier. We have made the
99 datasets available in the aeon .ts format as train/test data in addition to
providing a single file .tsf with all 99 series used to generate the train test in one
file on the accompanying websiteﬂ We have also provided simple code examples
to perform the transforms and run a regression experiment.

To synchronise with TSER, we primarily use mean squared error (MSE) for
comparison, comparing algorithms using adapted critical difference diagrams [6]
that compare by ranks. Algorithms that are not significantly different from each
other are grouped into cliques, within which there is no significant difference.
We test significance using a pairwise Wilcoxon sign rank test (o = 0.05) with
Holm correction for multiple testing. We acknowledge that there are a large
range of metrics used in forecasting, and we perform our final assessment with
alternatives to MSE.

5 https://anonymous.4open.science/r/paper_2025-3B73
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3 Time Series Forecasting Algorithms

We have experimented with a diverse set of regressors to evaluate TSER for
TSFR problems. We have compared with the full range of regressors reported
n [I1], but we omit several because they performed very poorly. These include
nearest neighbour approaches and function regressors. Full results for these are
available on the accompanying website.

Standard Regressors Standard regressors often perform well at forecasting
tasks. We use regression versions of random forest (RandF) [2], extreme gradient
boosting (XGBoost) [3] and Rotation Forest (RotF) [23] as standard machine
learning benchmarks. These are trained and tested on the formatted tabular data
formed by windowing. We also use a linear ridge regression algorithm (Ridge).

TSML Regressors Regression versions of the FreshPRINCE [17] (Fresh Pipeline
with RotatIoN forest Classifier) and DrCIF [19] (Diverse Representation of
Canonical Interval Features) were the best performing TSML algorithms for
TSER [11]. FreshPRINCE is a pipeline algorithm for regression with two com-
ponents: the TSFresh [4] feature extraction algorithm that transforms the input
time series into a feature vector, and then a Rotation Forest estimator that
builds a model and makes target predictions. The Diverse Representation of
Canonical Interval Features (DrCIF) is an interval based tree ensemble regres-
sor. Interval-based techniques select phase-dependent intervals of fixed offsets
from which to extract summary features. These intervals share their position
for all time series, with the aim of discovering discriminatory features from par-
ticular locations in time. Most interval techniques take the form of a forest of
decision trees, using different intervals to achieve diversity in the ensemble. The
first interval based approach, Time Series Forest (TSF) [7] and DrCIF [21] are
both tree ensembles that use unsupervised transforms to extract features. TSF
uses simple summary features (mean, standard deviation and slope) over the
original time series. DrCIF uses three data representations: the original time
series; the first order differences; and the periodogram. A different transform
based on the CAnonical Time series CHaracteristics (Catch22) features [15] is
created for each base regressor over these diverse representations. Catch22 is a
set of 22 features filtered from the 7000+ available in the Highly Comparative
Time Series Analysis (HCTSA) toolbox [9]. The Catch22 features were selected
for use on normalised data, but we do not make that assumption. Hence, seven
additional summary statistics are also candidates: the mean, standard-deviation,
slope, median, interquartile range, min, and max. For each data representation,
a set of k random intervals are selected, and the a unsupervised features are
calculated and concatenated. Finally, a CART tree is trained on the feature set
unique to each ensemble member.

Another popular family of TSML algorithms is based on random convolu-
tions. The ROCKET family of classifiers [5] all involve unsupervised transfor-
mations using randomised convolutions and a pooling operation followed by a
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linear or ridge classifier or regressor. The original ROCKET was converted to
TSER by switching the classifier for a ridge regressor. We extend this to consider
a more recent ROCKET variant, MultiROCKET |[25].

Deep learning regressors Deep learning algorithms are simple to adapt for
regression tasks. To mirror the TSER study, we include a standard convolu-
tional neural network adapted for time series (CNN) [26], Residual Network
(ResNet) [12] and two versions of InceptionTime [§], a single InceptionTime
model and an ensemble of five base models.

Statistical forecasters For benchmarking, we also compare with standard
statistical forecasting techniques. We use bespoke implementations benchmarked
for correctness against other open source alternatives, and are significantly faster
implementations than those available in other common toolkits. These have been
refactored into the aeon toolkit.

Naive Forecaster. This simply predicts the last value in the series as the
one-step ahead forecast. This is one of the simplest methods and is included as

a benchmark for more complicated methods.
Exponential Smoothing. At its simplest, exponential smoothing involves

applying a weighted average to previous observations, where these weights de-
crease exponentially as the observations go further back in time. Different expo-
nential smoothing algorithms take into account features of the data such as
seasonality and trend, including damping the trend, as undamped trend of-
ten produces unreliable longer-horizon forecasts. The forecasting parameters
are then usually estimated by minimising the sum of squared errors (SSE)
SSE = ZtT:1(yt - @t\t—l)g = ZtT=1 ef.

It is also possible to translate these equations into statistical models by defin-
ing the error as additive error as in [1f or multiplicative error as in [2, We then
assume that these errors are normally and independently distributed (NID) white
noise with mean 0 and variance o2 i.e. ¢, = &, ~ NID(0,0?).

€t =Yt — Qt\t—l (1)
_ Yt - Yt|t—1 2)
Ytjt—1
We can then generate the state space error equations relating the observed
values of the forecast variable and new values of level, trend and seasonality
with previous values of level, trend and seasonality as well as the one-step errors.

An example is given in equation [3] for a model with additive errors, trend and
seasonality. This model would be described in shorthand as ETS(A,A A)

€t

Ye =li—1 + b1+ 8i—m + &4
ly =li—1 +by—1 +agy
by =b;_1 + Bey (3)
St =St—m + VEL
Where 8 = af* and v = (1 — a)y*
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This model can then be used to estimate prediction intervals as well as pro-
duce forecasts. It also allows the estimation of the smoothing parameters by
maximising the likelihood. Algorithms exist for automatically selecting the best

ETS model base by maximising the likelihood.
ARIMA. An auto-regressive (AR) model uses a weighted combination of p

values of the series. A gth order moving average MA(q) model takes a constant
c and adds this to the weighted average of the errors of previous forecasts. These
models require the data to be stationary. The ARIMA (p,d,q) model removes the
requirement of the data to be stationary by applying differencing to the data.
Differencing is applied repeatedly until the data are stationary. The degrees of
differencing applied by the model are given by d. The ARIMA (p,d,q) model is
then the combination of an AR(p) and a MA(q) component of the form given
in equation [4] combined with differencing the data.

Ye = P1Yt—1 + oo T OplY—p et Oigi 1+ F0Ei g+ ey (4)

Seasonal ARIMA uses a basic ARIMA model plus an ARIMA model where
the lagged values are at the seasonal period. It has a different set of coefficients
for the seasonal and non-seasonal lags as given in equation

Yt = P1Ys—1+ o + OpYt—p + Cc+ 01801 + . + 0414

)
+ ¢1yt75 + ...+ @Pytfp*s + 9151&75 + ..+ QQEth*s + & ( )

Differencing is applied using both a lag of one and also the seasonal lag. The de-
grees of normal differencing is given by d, and the degrees of seasonal differencing
is given by D. The overall model is denoted as ARIMA(p,d,q)(P,D,Q).

The seasonal ARIMA model has many parameters, and hyperparameters
which need to be tuned for the data. It is not practical to do this by hand for
a large number of datasets, so an algorithm for selecting these parameters is
required. The parameters ¢, 6, @, @ and c are selected using a numerical opti-
misation technique such as the Nelder-Mead algorithm to minimise the Akaike’s
Information Criteria (AIC). A variation on the Hyndman-Khandakar algorithm
is used to select the hyperparameters.

Algorithm: Modified Hyndman-Khandakar algorithm for auto-
matic seasonal ARIMA modelling

1. The seasonal period of the data is estimated using the autocorrelation
of the series
2. The number of differences d is determined using repeated KPSS tests.
3. If the seasonal period is not one, the data is seasonally differenced once
(i.e. D =1) else it is not (D = 0).
4. A stepwise search is then used to search for suitable values of p, ¢, P
and Q.
(a) The best initial model (with the smallest AIC) is selected from:
ARIMA(2,d,2)(0,D,0)
ARIMA(0,d,0)(0,D,0)
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ARIMA(1,d,0)(0,D,0)
ARIMA(0,d,1)(0,D,0)
If d = 0 then c is included in the model, otherwise it is set to 0.
(b) The model is then varied 1 step at a time. One of p, ¢, P and @ is
varied by +1 and this is tested both with ¢ included in the model
and ¢ = 0.
(¢) The previous step is repeated until no adjustment, either way, of
any of the parameters yields a lower AIC.

Table 2. List of all forecasting algorithms used in evaluation

Algorithm ‘Acronym Implementation
Machine Learning
Ridge Regression Ridge scikit-learn
Rotation Forest [23] RotF aeon
Random Forest [2] RandF scikit-learn
Extreme Gradient Boosting [3] XGBoost scikit-learn
Deep Learning
Convolutional Network [26] CNN aeon
Residual Network [12] ResNet aeon
Inception Time [8] Inception aeon
Inception Time Ensemble [§] InceptionE  |aeon
Time Series Machine Learning
Time Series Forest [7] TSF aeon
Randomised convolutions [5] ROCKET aeon
MultiROCKET [25] ROCKET aeon
Diverse representations canonical intervals [19]|DrCIF aeon
TSFresh/rotation forest pipeline FreshPRINCE |aeon
Statistics
Predict last Naive bespoke
Exponential Smoothing ETS bespoke
Automatic ETS AutoETS bespoke
AutoARIMA AutoARIMA |bespoke
AutoSARIMA AutoSARIMA |bespoke

Table [2| summarises the algorithms used in evaluation. All estimators are
used with the default configuration from the associated open source toolkit.

4 Results

Our first experiment tests whether the pattern of performance observed with
TSER algorithms on TSER data is recreated with the 99 TSFR, datasets. The
final experiment in [I1] compared 13 regression algorithms (acronyms explained
in table . Figure shows the averaged rank performance of these 13 algorithms
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13121110 9 8 7 6 5 4 3 2 1 14131211109 8 7 6 5
| P I P Y 1 'l I I | | sladalylalyly

CNN 105161 | | ROCKET % \M Ridge

Ridge —23323 FreshPRINCE CNN 222 2281 RandF
XGBoogst 8.8065 50488 |nceptionE MultiROCKET 22697 L 45152 Najve
9.3838 5.3838 i
ROCKET 82419 55484 potF TSF == L2388 |nceptionE
ResNet 78548 63226 MyltiROCKET  FreshPRINCE 9.0101 2772 X GBoost
esNe ulti 8.4949 5.9697
RandF 17258 63548 TGQF DrCIF RotF
an X 7.9091 6.6869 i
7.0645 Inception ResNet Inception
TSER TSFR

Fig. 1. (a) Ranks of 13 regressors on 63 TSER data published in [II] and reproduced
with permission and (b) equivalent ranks on the 99 TSER problems, estimators ranked
by MSE.

on (a) the TSER data and (b) the TSFR, with the addition of a naive forecaster
to provide context.

The pattern of results is very different. The most notable difference is that
ridge regression is promoted from the second worst to the best algorithm and the
two best performers at TSER, DrCIF and FreshPRINCE, are now in the bottom
half. We have included a Naive forecaster for context. Naive simply predicts
the next value to be the same as the last seen. Ridge is the only algorithm
to significantly outperform the naive strategy of predicting the last seen value.
In fact, random forest and inception time are the only algorithms that are not
significantly worse than the naive forecaster. These results are surprising and
may be due to the fact the problem formulation may just be too hard. Naive
forecasting is often a strong benchmark, and the experimental framework is of
little value if it is too hard to outperform a naive forecaster. We are creating
a large degree of separation between the train and test series, meaning models
would need to find a strong representation of the underlying process driving the
time series to make significant predictions.

We believe that one reason the TSER algorithms do badly is that they do not
explicitly encode a key characteristic of forecasting, namely, that the next value
is directly related to the previous value. Naive does well because this constraint
makes it unlikely that one step ahead is that different to the last observed value.
This constraint is hard coded into Naive and it could be argued that linear
models like Ridge are designed for this scenario too. TSER do not encode this
constraint.

To test the effect of explicitly encoding the relationship between observations
at t and ¢t + 1 we can simply reformulate the problem so that the regressor is
now the difference between observations rather than the actual value. We are
changing the problem from ”predict the next value” to ”predict the change from
the previous value”. This does not introduce any bias, since it is in the very
nature of the forecasting problem. We leave the response variables the same (i.e.
windows of the original values) and repeat our experiments. Figure [2| shows the
relative performance of machine learning and TSML algorithms both with and
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without differencing the response variable (A prefix d— indicates differenced).
We do not include d-Ridge because it performed worse than the original.

12 11 10 9 8 7 6 5 4 3 2 1
I T T I A o A T |
TSF 197816 L 38161 4 pDrCIF
DrCIF 10.0920 L 40575 Ridge
FP 10.0460 4.6897 d_RandF
XGBOOSt 7.5747 4.8046 d_TSF
RandF _6:3678 4.9425 _ 4_Fp
Naive —2:2483 2:3793  d-XGBoost

Fig. 2. Relative ranks of 12 regressors when predicting the next value or the change in
the next value from the previous (prefix d). Estimators are ranked by MSE.

Predicting the change in y rather than the actual value improves performance
of all of the regression based algorithms, but the effect is greater with the TSER
approaches. DrCIF now joins Ridge as the only estimator significantly better
than Naive and it is also significantly better than standard regressors RandF,
RotF and XGBoost. This suggests there is at least some promise from a TSER
approach.

To calibrate how hard our forecasting formulation is, we compare perfor-
mance to standard statistical forecasting algorithms exponential smoothing (ETS)
and auto regressive moving average (ARIMA) models. We cannot make a direct
comparison because the statistical algorithms are designed to forecast one step
ahead. To be directly comparable, we train standard forecasters on the train
series then recursively make predictions across the test horizon, allowing the
statistical forecaster to retain information about the time step so it can use the
correct seasonal component. For the ARIMA models, we also allow the model to
fit know the true residual at each step, otherwise it will degrade to an AR model.
We would not expect ARIMA to do well with such a large prediction horizon,
and this is borne out by the results. Figure [3| shows the relative performance of
the time series regressors in comparison to the stats models. DrCIF, Ridge and
AutoETS are better than Naive. This would imply that projecting the trend and
seasonality across a long prediction horizon is better than the simple benchmark.

It is quite possible a more recent deep learning or large language model could
do better. However, Figure [4 shows that standard deep learners are worse than
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AutoSARIMA —©:8276 |
AUutoARIMA —5:6437 |

Naive 4.2874

3.1954

3.4138

3.5287

3.9540

d_FP 4.1494

d-DrCIF
Ridge
AUtoETS
d-TSF

Fig. 3. Relative ranks of regression based forecasters and standard statistical forecast-

ers.

DrCIF on differenced response data, indicating the problem is non trivial (we

have not had the computational resources to run InceptionTime).

8 7 1

L |

CNN _7J126 2.1494
ResNet 60115 2.8276
Inception —5:3563 2.9195
InceptionE —47586 4.2644

d-DrCIF
d-FP
d-TSF
RandF

Fig. 4. Relative ranks of differenced TSER algorithms and deep learners.

5 Analysis

The performance of AutoETS suggests that the improvement over Naive is
achieved through retaining the seasonality and trend. We investigate whether
DrCIF is simply recreating this effect rather than modelling some other under-
lying process. We look in more detail at the performance of DrCIF relative to
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AutoETS in order to determine the potential utility of the approach and its
strengths and weaknesses. Figure [5] shows the scatter plots of DrCIF and Au-
toETS against the Naive forecaster. DrCIF shows much greater variation from
Naive compared with ETS, suggesting there might be occasions where it discov-
ers something more than trend and seasonality. To demonstrate this we examine
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Fig. 5. RMSE scatter plots of Naive against DrCIF and ETS.
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some series where the performance of DrCIF and AutoETS is most different.
Table |5 breaks down wins and losses by problem type. AutoETS does better at
the daily and monthly data, whereas DrCIF wins for hourly and the pedestrian
class. These data are less likely to exhibit steady trends and seasonality.

Row Labels DrCif wins AutoETS win

australian 3 0
Births 0 1
Daily 5 14
Hourly 8 0
London 4 1
Monthly 3 15
Pedestrian 5 0
Solar 2 3
Weather 3 3
Weekly 11 6
Grand Total 44 43

Table 3. Comparison of DrCIF and Auto wins across datasets
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UYL

traffic hourly dataset T1 pedestrian counts dataset T1

mr hourly T170 oikolab weather dataset T4

Fig. 6. Four example segments of test data where DrCIF performed better than Au-
toETS.

Figure [6] shows four problems where DrCIF performed relatively well and
AutoETS did poorly,.

6 Conclusions

We have addressed the question of whether there is a place for TSER algorithms
in TSFR. Our specification would be considered challenging. Our conclusion is

there is some promise, but also room for improvement.
We have directly reformulated operational forecasting problems as time se-

ries regression problems in order to bridge the gap between TSER and TSFR
research fields. We compared TSML algorithms to alternative approaches from
machine learning, deep learning and statistics. The general conclusion is that
with this formulation it is hard to beat Naive forecasting with any approach,
and the only algorithm to do so is Ridge regression. We argue this is because
forecasting inherently encodes the problem as ”how will the value change from
the time before”, whereas the first TSER formulation is unconstrained. By mak-
ing the simple transform of using the change in series as the response variable,
we significantly improve all the regression algorithms. The best performer, Dr-
CIF, is significantly better than Naive forecasting and no worse than baselines
ridge regression and AutoETS, where AutoETS has an inherent advantage of
internally recording the true time step. This is achieved without any alteration
to DrCIF itself, and using a relatively short window of past values. The fact
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AutoETS outperforms Naive implies there is some persistence of trend and sea-
sonality over these large prediction intervals. That both ridge and DrCIF are
equivalent to AutoETS suggests that they are successfully internally modelling
this, albeit in a much more complex way than ETS. This is the first phase of the
investigation and is a benchmarking exercise. We will repeat these experiments
with a longer window for the regression problems before switching to a more
familiar expanding window formulation. We will also evaluate regressors using
direct and iterative forecasting over a shorter predictive horizon. It would also
be interesting to evaluate the performance of predicting the percentage differ-
ence of the series. We will then expand our evaluation to consider more recently
proposed machine learning and deep learning forecasting algorithms, whilst ex-
tending the scope of TSER ensembles to incorporate meta-ensemble structures.
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