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Abstract. Time-series forecasting is critical for many real-world appli-
cations. Recent advances in time-series foundation models have substan-
tially improved forecasting performance across diverse domains. How-
ever, most time-series foundation models remain deterministic and pro-
duce only point estimates without model confidence quantification, risk-
ing costly errors when faced with previously unseen data distributions.
So called, selective forecasting mitigates this risk by enabling forecasting
models to abstain from low-confidence predictions, trading coverage for
improved reliability. In this paper, we introduce the Fine-tunable Time-
Energy Model for time-series foundation models (FiITEM), a selective
forecasting framework that extends pre-trained time-series foundation
models, enabling selective forecasting. FiTEM appends a lightweight de-
coder to a pre-trained time-series foundation model and trains it via
self-supervised learning during few-shot fine-tuning to produce confi-
dence scores for each forecast and use those to reject low-confidence
forecasts. FITEM builds on state-of-the-art selective forecasting tech-
niques requiring only a small amount of labeled target data and is trained
as part of few-shot fine-tuning of a pre-trained time-series foundation
model. We evaluate FiTEM on several time-series forecasting benchmark
datasets unused during base model training in two modes: zero-shot,
where FITEM components are trained on limited target data without
updating the parameters of the pre-trained foundation model, and few-
shot, where the pre-trained model is few-shot fine-tuned on a small frac-
tion of target data before FITEM components are trained on the same
data. Experiments show that FiTEM reduces forecasting error by up to
56.4% at low target coverage and up to 35.4% for target coverage of 50%
and above.

Keywords: Time-series foundation models - Selective forecasting - Fine-
tuning - Confidence estimation.

1 Introduction

Time-series forecasting is used for many real-world applications, such as energy
management, weather forecasting, and traffic prediction [17]. Significant progress
has been made in time-series forecasting, with specialized deep learning mod-
els improving state-of-the-art performance [17,15, 18, 14, 12]. Traditionally, time-
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series forecasting models are trained and evaluated on a single labeled dataset,
which limits their ability to generalize to new domains or datasets [8].

Recently, time-series foundation models trained on a wide range of time-series
datasets have emerged, offering a new paradigm for time-series forecasting and
analytics [9,8,2,3,11,10,19,7,5|. Unlike traditional time-series models trained
on a single labeled dataset, foundation models are trained on a wide range of
time-series datasets across multiple domains, and hence generalize across diverse
distributions, delivering strong zero-shot and few-shot forecasting performance.
These models include large language models adapted for time-series (LM-based)
[19,7,5] and models specifically pre-trained on time-series data (TS-based) [11,
10, 3]. TS-based models are generally smaller with fewer parameters, resulting
in less memory usage and faster inference, which is crucial for many real-time
applications [8]. Moreover, studies have shown that LM-based time-series models
often underperform compared to TS-based models in zero-shot and few-shot
settings [§].

A key limitation of current TS-based models is that most of them are de-
terministic, producing only best-guess point estimates without quantification of
uncertainty or model confidence [11,3,10]. This is particularly problematic in
zero-shot forecasting scenarios, where models are used to forecast unseen data
without any fine-tuning. In such cases, the model’s performance can vary signif-
icantly depending on whether the patterns in the target data align with those
observed during pre-training, leading to potentially unreliable forecasts with-
out any indication of confidence. Therefore, having only point forecasts reduces
overall model utility, especially in applications where the penalty for erroneous
forecasts is high and managing risk becomes essential [1,16]. So-called selec-
tive forecasting addresses this limitation by extending deterministic forecasting
models with a selection function that allows models to abstain from making
predictions when model confidence is low [1,4]. Selective forecasting enables a
trade-off between selective coverage (the percentage of forecasts that are se-
lected) and selective risk (error of the selected forecasts only), ensuring that the
model only forecasts when sufficiently confident. A selective forecasting frame-
work called The Time-Energy Model (TEM) [1] has been proposed to enable
selective forecasting for traditional time-series forecasting models, trained on a
single labeled dataset. However, there are no selective forecasting methods for
large-scale T'S-based models, trained on a large corpus of time-series.

In this paper, we introduce Fine-tunable Time-Energy Model (FiTEM), a
selective forecasting framework that extends pre-trained time-series foundation
models, enabling selective forecasting. FiTEM appends a lightweight decoder to
a pre-trained TS-based model and trains it via self-supervised Contrastive Di-
vergence (CD) learning to produce model confidence scores and enable selective
forecasting. FiITEM extends state-of-the-art selective forecasting techniques to
TS-based models, requiring only a small amount of labeled target data and is
trained as part of few-shot fine-tuning of a pre-trained time-series foundation
model. Experiments using two TS-based models (Timer and TimerXL) on 3
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benchmark datasets show that FITEM reduces forecasting error by up to 56.4%
and up to 35.4% for target coverages of 10% and 50%, respectively.

The paper is organized as follows: Section 2 reviews related work on time-
series foundation models and selective forecasting. Section 3 formally defines the
forecasting and selective forecasting problems for time-series foundation models.
Section 4 presents the proposed FITEM method. Section 5 describes the ex-
perimental evaluation setup. Section 6 reports the experimental results. Finally,
Section 7 provides concluding remarks and future directions.

2 Related Work

Deep-learning based time-series forecasting models have advanced significantly
in recent years. Recent models like Informer [17], Autoformer [15], FEDformer
[18], TimesNet [14], and PatchTST [12] have improved state-of-the-art perfor-
mance by increasing model accuracy, reducing latency, and enabling multi-task
capabilities including short and long-term forecasting, anomaly detection, clas-
sification, and imputation. These traditional approaches, often referred to as
time-series specific models [8], are typically trained and evaluated on a sin-
gle labeled dataset. While they achieve excellent performance on their specific
training datasets, they often cannot generalize to other datasets or distributions.
Furthermore, these models generally require substantial amounts of labeled data
to train, which is often not available in practice.

Time-series foundation models present an alternative paradigm to time-series
specific models. These models are trained on large corpora of datasets across
diverse domains, enabling more accurate forecasts across data distributions un-
seen during training. Foundation models can be categorized into two main types:
language-based (LM-based) and time-series-based (TS-based) models. LM-based
time-series foundation models leverage large language models pre-trained on
extensive text corpora and adapt them for time-series analytics tasks, utiliz-
ing their general language understanding and processing capabilities [19,7, 5].
However, empirical studies indicate that LM-based models often fail to provide
meaningfully accurate forecasts, particularly when considering their significant
computational requirements [13]. TS-based models are pre-trained exclusively
on time-series data and designed for various time-series analytics tasks. These
models are trained on a wide range of time-series datasets and are generally
smaller and less computationally intensive than LM-based alternatives. Despite
their relative size, T'S-based models still deliver excellent zero-shot and few-shot
performance [10,11,3]. The reduced computational footprint makes TS-based
models more practical for real-time applications while maintaining strong gen-
eralization capabilities across different time-series domains.

One key limitation of T'S-based models is that they are typically determinis-
tic, meaning they do not quantify model confidence, which is critical for informed
decision-making in real-world applications [1]. Recently, the TEM framework
[1] has been proposed to enable so-called selective forecasting for deterministic
time-series forecasting models, trained on a single labeled dataset. TEM adds
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additional neural network layers to encoder-decoder time-series specific models
and trains them to produce confidence scores for each forecast. These confidence
scores are then used to selectively reject low-confidence forecasts, improving
forecasting accuracy. TEM has been shown to work on a wide-range of time-
series benchmarks [1], but was developed for time-series specific models, such
as Informer [17], Autoformer [15], FEDformer [18], and TimesNet [14], and is
trained on a single labeled dataset [1]. At the time of writing, there are no known
selective forecasting methods for T'S-based models.

In this paper, we propose FiTEM, a fine-tuning-based selective forecasting
method for TS-based models. Similarly to state-of-the-art selective forecasting
methods, FITEM introduces a lightweight decoder appended to a pre-trained
time-series foundation model to generate confidence scores [1]. FITEM can be
trained in a few hours on a single GPU using only a small amount of labeled
target data.

3 Preliminaries and Problem Definition

Deterministic time-series forecasting. Let X = (2¢—ym+t1,...,x¢) denote the in-
put time series of length m with d features, and Y = (yt41,...,¥t+n) denote
the target series of forecasting horizon h. A deterministic time-series forecasting
model f, (with parameters #) produces a point estimate Y = f,,(X).

In the context of time-series foundation models, two distinct classes of datasets
are considered: source datasets Ds = {(Xs,Ys)} and target dataset Dy = {(X¢, Yi)}.
The source datasets Dy are used for training and validating foundation models.
Source datasets generally contain a large number of varied time-series, enabling
the model to learn general patterns and dependencies. The target dataset D; rep-
resents the application-domain data and is used to evaluate the trained model’s
fy performance in zero-shot, few-shot, or full-shot forecasting scenarios, where
a subset of the model parameters 6 is fine-tuned on the target data. Source and
target datasets do not contain overlapping time-series, i.e., Ds N D; = ). In case
of few-shot forecasting, a subset of the target dataset D, C D, is used.

Selective time-series forecasting. Selective time-series forecasting extends deter-
ministic time-series forecasting models f,, by introducing a selection function g
that maps each input X to {0, 1}, indicating whether the model should select or
reject the forecast. The selective forecasting model (fy, g) produces forecasts as
follows: R

Y = fdl(X)v if g(X) =

1
1, if g(X) =0 M)

(fy,9)(X) = {
where the forecast Y = f,,(X) is selected if g(X) = 1, and rejected when g(X) =
0. Selective coverage ¢(g) quantifies the proportion of inputs selected by the
selection function g, and can be viewed as the probability of a forecast being
selected.

#(9) = Elg(X)] = P(9(X) = 1) (2)
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Selective risk R(fy,g,¢) defines the forecast error of the predictive model fy
on selected forecasts using the selection function g, where ¢ is a pointwise loss
function (such as mean squared error):

E[(((f4,9)(X),Y) - g(X)]
?(g)

Problem statement. Given a foundation model f,, trained on the source datasets
Ds, find a selective forecasting model (fy,g) that improves zero-shot and few-
shot forecasting accuracy on the target dataset D; while maintaining selected
target coverage ¢(g).

R(fllf’gvé) =

(3)

4 Proposed Method Overview

In this section, we introduce FITEM (Fine-tunable Time-Energy Model), a se-
lective forecasting framework that extends pre-trained time-series foundation
models and enables uncertainty quantification and selective forecasting capa-
bilities. FiTEM addresses the key limitation of current TS-based time-series
foundation models by providing a mechanism to reject low-confidence forecasts
while maintaining high accuracy on selected forecasts.

FiTEM builds upon the Time-Energy Model (TEM) framework [1] by adapt-
ing it for T'S-based foundation models, enabling few-shot selective forecasting on
target data, previously unseen during training. FiTEM consists of three key com-
ponents: (1) a lightweight FiTEM architecture that builds a lightweight decoder
on top of the pre-trained foundation model, (2) a few-shot training procedure
that trains the FITEM decoder using limited target data, and (3) an inference
method that defines the selection function g to enable selective forecasting.

4.1 Architecture

FiTEM extends pre-trained time-series foundation models f, with a lightweight
decoder to enable selective forecasting. As shown in Figure 1, the architecture
consists of two main components: the pre-trained foundation model f, and the
FiTEM decoder Ej.

The pre-trained foundation model fy, is trained on large-scale source datasets
D, and is used to generate deterministic point forecasts Y = fu(X) for input
sequences X. As shown in Figure 1, an arbitrary f,, model consists of two compo-
nents: an encoder 1., which is used to capture and identify patterns in the input
data X and generate an intermediate latent representation fx, and a decoder
14, which acts as a forecasting head and uses the intermediate latent represen-
tation fx from the encoder to generate the forecast Y. The pre-trained model
[ encoder 1, can be optionally finetuned on a subset of the target dataset D,
to improve the model’s forecasting on the target dataset.

The FiTEM decoder Ey is a lightweight Energy-based Model (EBM) based
architecture from TEM [1] that re-uses parameters ¢ from the foundation model
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Fig. 1. FiTEM architecture for pre-trained TS-based foundation models

fuv- The decoder Ejy learns to re-use the input representations fx from the founda-
tion model’s fy, encoder parameters 1. to predict the confidence score E (called
Energy) of the forecast Y. The decoder Ej is trained using a subset of the tar-
get dataset D; (the same dataset as the one used for finetuning the foundation
model) to enable selective forecasting on the target dataset. As the Ey re-uses
1 from the foundation model to capture patterns in the input series X, the Fy
can have significantly less parameters than the original f, model. In FiTEM,
we utilize a lightweight MLP-based architecture with a few layers to ensure fast
model training and selective forecasting.

4.2 Training Method

FiTEM proposes to train the additional FiTEM decoder Ey on a subset of the
target dataset D; as an additional step to traditional few-shot fine-tuning to
enable selective forecasting on the target dataset. Training the Fjy can utilize as
few as 5% of the target dataset D, making it suitable for scenarios with limited
labeled data.

Few-shot fine-tuning is generally performed by training the pre-trained foun-
dation model f, encoder parameters 1), on a limited target data D; using
standard supervised learning with the original forecasting loss. This adapts the
foundation model f, to target domain characteristics while preserving general
time-series patterns learned during pre-training. The fine-tuning uses a reduced
learning rate and early stopping to prevent overfitting on the limited data.

In FiTEM, we propose to use the same target dataset D, to train the FiITEM
decoder FEy using self-supervised learning to enable selective forecasting on the
target dataset, enabling reducing forecasting error on the target data. We use
contrastive divergence (CD) [6] self-supervised learning to train the FiTEM de-
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coder Ey, as used in TEM [1]. The CD training process contrasts positive sam-
ples Y(©) from the training set against negative samples Y1) generated through
Langevin dynamics:

YO =YW vy EX, YY) 4w (4)
Lep = (BT = E7) + Aeg(ET)? + (E7)?) (5)

where Et = E(X,Y®) and E- = E(X,Y®) represent positive and negative
sample energies, respectively.

4.3 Inference

Once the FITEM decoder Ejy is trained, we can use it to perform selective fore-
casting on the target dataset D;. We utilize the Aggregated Energy inference
method as proposed in TEM [1] to generate model confidence scores for each
forecast Y = f»(X) and then use it to reject low-confidence forecasts based on
the user-defined target coverage ¢.

Aggregated Energy Computation. For each forecast Y = fu(X), FITEM com-
putes an aggregated energy score that captures the local energy landscape around
the prediction:

Fage(X,Y) = % zn: EX,Y +¢€) - EX,Y) (6)

i=1

where €; ~ N(0,02I) are noise samples that probe the energy surface around the
forecast. This aggregated energy summarizes how compatible are the forecast Y
and the input series X by sampling energy scores on and around the forecast Y.

Coverage Calibration. To enable selective forecasting, FITEM calibrates aggre-
gated energy scores by partitioning the energy range into aggregated energy
intervals and computing the empirical mean forecasting error for each interval.
Energy intervals are ranked by forecast error, and cumulative coverage is calcu-
lated to determine selection thresholds for desired coverage levels.

Selective Forecasting using Calibrated Aggregated Energy intervals. During in-
ference, FiTEM computes the aggregated energy for each forecast and compares
it against pre-calibrated thresholds to make selection decisions:

Y = fdl(X)’ if E‘dgg(xvY) < T(¢)

N (7

(fy,9)(X) = {

, otherwise

where 7(¢) is the energy threshold corresponding to desired coverage ¢. This
approach enables real-time selective forecasting with user-defined coverage levels,
providing a practical solution for reliable deployment of foundation models in
critical applications [1].
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5 Experiment Setup

5.1 Foundation Models

To evaluate the performance of FiTEM, we use several state-of-the-art time-
series foundation models f,. These models are trained on a wide range of source
datasets D, from different domains. We use the following models:

— Timer [11] — a large pre-trained time series foundation model designed
for univariate time-series analytics, including forecasting, imputation, and
anomaly detection. Timer is trained on a large openly available corpus
of time-series datasets from different domains, including electricity, traffic,
weather, and financial time-series. Timer has shown consistently strong per-
formance in both zero-shot and few-shot forecasting scenarios.

— TimerXL [10] - is a large decoder-only Transformer model builds on Timer
by supporting significantly larger context windows on multivariate time-
series. TimerXL has been shown to capture dependencies between correlated
time-series and to outperform Timer in zero-shot and few-shot forecasting
scenarios.

Both these models are among the best performing T'S-based models in liter-
ature, have open-source implementations, and are widely used in the time-series
community. Furthermore, both of these model’s implementations share the same
data splitting and loading strategies, as well as sampling strategies for few-shot
forecasting, making them directly comparable (which is rarely the case, as shown
in [8]).

5.2 Target Datasets

In this paper, we evaluate the performance of FiTEM on three distinct target
datasets D, from different domains. These datasets are widely used to benchmark
state-of-the-art time-series forecasting models and are known to be challenging
for traditional forecasting models [17, 15,18, 14, 12]. Notably, the target datasets
D, are not used for training any of the foundation models f,, (i.e. they are not
part of the source datasets D; used for pre-training) [11,10].

— ETThl, ETTh2 [17] — Electricity Transformer Temperature datasets con-
taining 2 years of hourly temperature measurements from two electricity
transformers in separate Chinese counties, each with 7 sensor features.

— Exchange Rate — Daily exchange rates between 8 different currencies
against USD from 1990 to 2016, with XRP/USD as the target variable for
forecasting.

We use the same sequence length m = 96 and prediction horizon h = 48
for all experiments across all datasets. All data preprocessing follows the same
procedures as outlined in the original Timer and TimerXL papers [11,10].
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5.3 Model Evaluation

We evaluate the performance of the foundation models fy, in zero-shot and few-
shot forecasting scenarios. In zero-shot forecasting, the foundation model fy
is evaluated on the target dataset D; without any additional training. In few-
shot forecasting, the foundation model f; is finetuned on a subset of the target
dataset D; and then evaluated on the target dataset D;.

In both cases, model performance is evaluated using the test set of the target
dataset D;. The same test set is used, regardless of whether the model is finetuned
or not, or how large the finetuning target dataset Dj is. Mean Square Error
(MSE) is used as the evaluation metric for both deterministic forecasting and as
the distance metric for selective risk, following evaluation setup in [1].

5.4 Implementation details

Foundation models. For Timer and TimerXL, we use the official implementations
with default hyperparameters as specified in [11,10]. For zero-shot forecasting,
we use the foundation models without any additional training on the target
datasets D;. The models are only trained on their respective source datasets Ds.
For few-shot forecasting, we fine-tune the foundation models on subsets of the
target datasets D} (5% and 20% of the total target dataset). Fine-tuning is per-
formed for up to 10 epochs using Adam optimizer with a learning rate of 0.0001
and early stopping with a patience parameter of 3. Open source implementations
of Timer and TimerXL are available at https://github.com/thuml/OpenLTM.

FiTEM architecture, training, and inference. The FITEM decoder Ey uses an
MLP-based architecture with 3 fully connected layers and 128 hidden units in
each layer. FITEM is trained using the same contrastive divergence (CD) self-
supervised learning procedure as used in the TEM experiments [1] on the same
subset of target data D; used for fine-tuning. We use 5% and 20% subsets of the
target datasets D; for training FiTEM. The same subsets are used for fine-tuning
the foundation models in the few-shot setting. For inference, we use the same
configuration of the inference procedure as used in the TEM experiments [1] to
enable FiTEM selective forecasting.

Computational resources. All experiments were conducted on a single NVIDIA
Quadro RTX 8000 GPU with 48GB VRAM.

6 Results

To quantify the performance of the proposed FiTEM method, we conducted
experiments on 3 benchmark time-series forecasting datasets. We built FiTEM
on top of the TimerXL foundation model, which is a state-of-the-art transformer-
based foundation model for time-series forecasting. We evaluate FiTEM in two
distinct settings:
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1. Extending non-finetuned models: We evaluate the performance of FiTEM
on the target dataset D;, where we only train FiTEM parameters on a select
subset of the target dataset Dj. In this setting, the deterministic foundation
model fy is only trained on the original source datasets D, and FiTEM
improves zero-shot performance on the target dataset D;.

2. Extending finetuned models: We evaluate the performance of FiTEM on
the target dataset D;, where we finetune the parameters of the determinis-
tic foundation model fy on the select subset of the target dataset D; and
then train FiTEM parameters on the finetuned model. In this setting, the
deterministic foundation model fy, is trained on the original source datasets
D, and then finetuned on a subset of D; and FiTEM improves few-shot
performance on the target dataset D;.

Non-Finetuned - Error Reduction Finetuned - Error Reduction
25 | -~ |D}|=5% 40 - - |D)|=5%
3 - |D} =20% —& |D}|=20%
= 20 A i
,E 30
t 15 4
2 20
< 10 A
ug.. 5 10 1
(D et tetenionvdentententos bttt 4 O e e e e o ] =
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Fig. 2. Selective forecasting results averaged across all target datasets and tested mod-
els for non-finetuned and finetuned models, with error reduction percentage (top) and
actual coverage expressed as a fraction (bottom) averaged across all target datasets
and tested models.

All experiments were conducted using 3 different random seeds to reduce the
potential for outliers. Results reported are the second best results out of the 3
runs.
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6.1 Selective forecasting performance on non-finetuned models

Table 1. Selective forecasting performance on non-finetuned models, where FiTEM
was trained on a 5% or 20% subset of the target dataset D; to improve zero-
shot forecasting performance. Results are shown for target coverages ¢(g) =
10%, 30%, 50%, 70%, 90%. Each cell contains a pair of the percentage error reduction
in bold and actual coverage (in parentheses) values for the given target coverage. Per-
centage error reduction is calculated by comparing the zero-shot forecasting error of
the non-finetuned foundation model f;, with the selective risk of the FiTEM Ej trained
on top of the non-finetuned model.

Timer Timer XL
Target Coverage
|Di| = 5% |D;i| = 20% |Di| = 5% |D;| = 20%
10% 15.8% (34.3%) 4.2% (27.9%) 21.9% (27.2%) 56.4% (5.1%)
30% 8.8% (60.4%) 7.0% (34.5%) 26.0% (39.4%) 38.1% (14.4%)
50% 8.8% (60.4%) 3.0% (70.0%) 28.1% (41.8%) 18.8% (38.9%)
70% 7.2% (70.8%) -0.5% (84.8%) 26.9% (45.8%) 12.5% (54.1%)
90% 6.6% (74.2%) -1.6% (98.0%) 21.4% (67.2%) 2.9% (79.7%)

As seen in Table 1, FiITEM improves the zero-shot forecasting performance
of both the pretrained Timer and TimerXL models on all three datasets when
trained on a 5% and 20% subsets of the target dataset D;. On average across
all datasets, FITEM can reduce forecasting error by up to 15.8% on Timer and
56.4% on TimerXL, when selecting target coverage < 30%. When selecting 50%
target coverage, FITEM improves forecasting accuracy by up to 8.8% on Timer
and 28.1% on TimerXL, while achieving 60.4% and 41.8% actual coverage re-
spectively. Generally, for non-finetuned Timer and TimerXL models, FiTEM
provides a 257% larger improvement in forecasting accuracy for TimerXL when
compared to Timer at a cost of lower actual coverage.

We also observe that FITEM fails to decrease forecasting error for Timer,
when trained on 20% of the target dataset Dy, for coverages > 70%. This can
be explained by Timer’s smaller context window, which fails to capture more
complex patterns and generates a lower quality latent representation of the time-
series data. We also observe that when FiTEM is trained on top of TimerXL
with 5% subset of target data D, the forecasting error improvements fluctuate
non-monotonically with selected target coverage, while when trained on the 20%
subset of target data Dj, the improvements are more consistent. This is likely
due to the very constrained amount of training data available for FiTEM to learn
from, and the fact that the model is not able to learn the underlying patterns
of the time-series data as well as when trained on the 20% subset of target
data Dj;. However, the model can still provide utility by reducing forecasting
error, assuming that the user can accept the lower actual coverage as a trade-off.
Overall, these results indicate that FiTEM can improve zero-shot forecasting
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performance on a target dataset D; even when there is not enough data to be
used to finetune the deterministic foundation model f.

6.2 Selective forecasting performance on finetuned models

Table 2. Selective forecasting performance on finetuned models, where the de-
terministic foundation model f, was finetuned on a subset of the target dataset
D; and FiTEM was trained on a 5% or 20% subset of the target dataset D; to
improve few-shot forecasting performance. Results are shown for target coverages
o(g9) = 10%, 30%, 50%, 70%, 90%. Each cell contains a pair of the percentage error
reduction in bold and actual coverage (in parentheses) values for the given target cov-
erage. Percentage error reduction is calculated by comparing the few-shot forecasting
error of the finetuned foundation model fy with the selective risk of the FIiTEM Ey
trained on top of the finetuned model.

Timer Timer XL
Target Coverage
|Di| = 5% |D;| = 20% |Di| = 5% |D;| = 20%
10% 41.0% (10.3%) 44.2% (20.2%) 46.2% (23.6%) 22.9% (5.1%)
30% 25.3% (29.5%) 41.3% (27.0%) 36.3% (36.6%) 18.8% (10.6%)
50% 25.7% (42.2%) 14.0% (64.2%) 35.4% (39.7%) 11.8% (46.9%)
70% 25.2% (45.9%) 8.0% (70.3%) 24.2% (50.9%) 11.1% (53.9%)
90% 9.4% (74.7%) 3.6% (87.0%) 20.9% (69.0%) 11.3% (66.2%)

As seen in Table 2, FiTEM significantly improves the few-shot forecasting
performance of both Timer and TimerXL models when the foundation models
are finetuned for 10 epochs. Unlike experiments shown in Section 6.1, the deter-
ministic foundation model f, is now finetuned on subsets of the target dataset
D, and then FITEM is trained on top of the finetuned model. The finetuning im-
proves baseline foundation model fy forecasting error and also enables FiTEM
to achieve even greater reduction in forecasting error. On average across all set-
tings, FITEM can reduce forecasting error by up to 44.2% on Timer and 46.2% on
TimerXL at low target coverage (10%). At 50% target coverage, FiTEM achieves
error reductions of up to 25.7% on Timer and 35.4% on TimerXL, with actual
coverage rates of 42.2% and 39.7% respectively. This provides end-users with
several potential options for trading off between forecasting error and coverage,
depending on the application and the potential penalty for erroneous forecasts.

We observe that FiTEM selective forecasting performance fluctuates depend-
ing on the size of the target dataset Dj used for training. When trained with
20% of the target dataset D, with Timer, the actual coverage is 40% higher on
average (exceeding or nearly matching target coverage) at the expense of 59%
decrease in error reduction than when trained with 5% of D;. However, this be-
haviour is generally preferable, since it allows the end-user more direct control
over the trade-off between forecasting error and coverage. For FiTEM trained
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with TimerXL, the 5% subset of D} shows overall better performance than the
20% subset of Dj. This was also observed in the non-finetuned experiments,
where FITEM trained with TimerXL and 5% of D; showed better performance
than FITEM trained with TimerXL and 20% of D;. This can likely be explained
by the fact that TimerXL produces a higher quality latent representation fx of
the time-series, making the FiTEM decoder converge faster and possibly overfit
with the increased number of training samples. However, further experiments
will be required to understand the exact conditions that cause this behaviour.

On average, as seen in Figure 2, selective forecasting results on finetuned
models are significantly better than the non-finetuned models. The finetuned
models are capable of achieving higher error reduction using selective forecast-
ing, while maintaining higher actual coverage. These results demonstrate that
FiTEM provides substantial benefits for few-shot forecasting scenarios, with fine-
tuning amplifying the selective forecasting improvements across all experimental
conditions.

6.3 Model parameters and training time

Table 3. Parameter counts for foundation models f; and FiTEM FEjs.

Model Total Parameter Foundation model FiTEM model

count fu % Es %
Timer 69.3M 97.2% 2.8%
TimerXL 68.2M 98.8% 1.2%

As shown in Table 3, FITEM is very parameter-efficient compared to the
foundation models f it builds on. The FiTEM components constitute only 2.8%
and 1.2% of the total model parameters for Timer and TimerXL, respectively.
This lightweight FiTEM architecture provides excellent selective forecasting per-
formance with minimal additional computational overhead during fine-tuning or
inference, making it suitable for resource-constrained environments and real-time
applications.

During experiments, we observed that the training time for FiTEM is com-
parable to the fine-tuning time for the foundation model f,. As both TS-based
models Timer and TimerXL are quite parameter efficient and, as shown in Table
3, the FITEM components are only a small fraction of the total model param-
eters, the foundation model fine-tuning and FiTEM training are both compu-
tationally inexpensive. Total training time for both fine-tuning f, and training
FiTEM is 5—20 minutes, depending on the size of the subset of the target dataset
D; used. In our experiments, no combination of fy finetuning and FiTEM train-
ing took longer than 1 hour, when using up to 20% of the target dataset D; for
training.
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7 Conclusion and Future Work

In this paper, we introduced the Fine-tunable Time-Energy Model (FiTEM),
a selective forecasting framework for pre-trained time-series foundation models
that can be efficiently trained as an additional step of foundation model finetun-
ing. Our experiments across 3 benchmark datasets demonstrated that FiTEM
significantly enhances both zero-shot and few-shot forecasting performance of
Timer and TimerXL, reducing errors by up to 56.4% at low coverage levels and
up to 35.4% for target coverage of 50% and above. FITEM’s model parameter
efficiency and short training times make it practically applicable, not adding
substantial computational overhead during both model training and inference.
We also provided a detailed analysis of the FiTEM framework, showing that it
can be used to improve the reliability of foundation models in a wide range of
applications.

For future work, we will extend FiTEM to more TS-based models and add
experiments with additional benchmark datasets. Furthermore, we will evaluate
more advanced architectures for the FITEM decoder, based on state-of-the-art
time-series analytics models, potentially improving selective forecasting perfor-
mance further. Finally, we will experiment with using data augmentation strate-
gies to increase the amount of data available for both FiTEM training and foun-
dation model finetuning.
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