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Abstract. Ensemble methods combine predictions from multiple mod-
els to improve forecasting accuracy. This paper investigates the effec-
tiveness of multi-output ensembles for multi-step time series forecasting
problems. While dynamic ensembles have been extensively studied for
one-step ahead forecasting, their application to multi-step forecasting re-
mains largely unexplored, particularly regarding how combination rules
should be applied across different forecasting horizons. We conducted
comprehensive experiments using 3568 time series from diverse domains
and an ensemble of 30 multi-output models to address this research gap.
Our findings reveal that dynamic ensembles based on arbitrating and
windowing techniques achieve the best performance according to average
rank. Interestingly, we observed that most dynamic approaches struggle
to outperform a simple static ensemble that assigns equal weights to
all constituent models, especially as the forecasting horizon increases.
The performance advantage of dynamic methods is more pronounced in
short-term forecasting scenarios. The experiments are publicly available
in a repository.

Keywords: Ensemble methods - Time series forecasting - Multi-output
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1 Introduction

Multi-step forecasting plays a key role in organizational planning by reducing
long-term uncertainty in time series data. Ensemble methods combine the out-
put of several models to make aggregated predictions. These approaches have
been shown to improve predictive performance across many tasks [6], including
forecasting [7]. One of the main advantages of ensembles is that they reduce the
risk of selecting a suboptimal model [13].

Since Bates and Granger’s pioneering work [3] on combining different models
for time series forecasting, hundreds of studies have explored forecast combina-
tion techniques. The simplest approach is to assign equal weights to each model
through arithmetic mean, though weighted averages that reflect expected model
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performance are also common. In non-stationary time series, where data distri-
butions change over time, the combination rules typically need to be dynamic,
with weights being adapted to temporal changes in the series.

The literature encompasses several dynamic forecast combination strategies,
most based on regret minimization [10], windowing [19], or meta-learning [9)].
However, these dynamic approaches are typically designed for one-step ahead
forecasting problems, assuming immediate feedback about actual values for error
computation and combination rule updates.

Despite the established importance of multi-step forecasting across domains,
there remains a significant research gap regarding how dynamic combination
methods should be applied in these settings. For instance, should different weights
be computed for each horizon, or should weights be estimated jointly for all fore-
casting horizons? While approaches for multi-step forecasting include recursive,
direct, or multi-output methods [20], with multi-output methods demonstrating
superior performance [20], the literature on dynamic ensembles specifically for
multi-step ahead forecasting remains scarce.

Our work addresses this gap by investigating the performance of ensembles
composed of multi-output models for multi-step forecasting problems. Our goal
is two-fold:

1. To determine which dynamic combination rule performs best for multi-step
ahead problems, extending previous analyses that focused on one-step ahead
tasks [9].

2. To identify the optimal approach for computing ensemble weights along the
forecasting horizon. To our knowledge, no prior work has addressed this
topic.

We conducted a comprehensive empirical study using 3568 univariate time
series from multiple domains. Our experiments tested various combination rules
with an ensemble of 30 individual multi-output models, all implemented as stan-
dard supervised learning regression algorithms trained for auto-regression.

The results indicate that dynamic combination rules based on arbitrating [9]
and windowing [15] achieve the best average rank. We also found that the fore-
casting horizon significantly impacts performance. While dynamic combination
works in short-term forecasting, this type of approach deteriorates as the horizon
increases. In effect, most approaches struggle to outperform simple equal-weight
combinations for multi-step ahead forecasting. Regarding weight computation
across horizons, we observed no substantial differences among the tested ap-
proaches. All data sets and experimental code are publicly available in an online
repository?.

The rest of the paper is organized as follows. In the next section (Section
2), we provide a background to our work. We start by defining the time series
predictive task. We also overview the literature related to our work. We focus
on the topics of dynamic ensembles and multi-step forecasting. In Section 3, we
present the materials and methods used in this paper. We describe the case study

4 https://github.com/vcerqueira/experiments-multioutput_ensembles
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which contains time series from several application domains. We also describe
the methods used in detail. Moreover, we explain the experimental design used in
the experiments. Then, we present the experiments in Section 4. In that section,
we outline the research questions and provide an empirical answer to them. We
discuss the results obtained in Section 5, pointing out some future directions.
Finally, the paper is concluded in Section ?7.

2 Background

2.1 Time Series Forecasting

We define a univariate time series as a sequence of values Y = {y1,vy2,..., Un},
where y; € Y C R is the numeric value of the time series at time ¢ and n is the
length of Y. We assume that the observations of the series are captured at regular
periods (e.g. every hour). This work addresses multi-step ahead forecasting (also
referred to as long-term forecasting [20]) problems in univariate time series. In
practice, we aim at predicting the value of the H upcoming observations of the
time series, Yn+t1,-- -, YntH, where H denotes the forecasting horizon.

The predictive task is formalized as an auto-regressive problem. Thus, each
observation is represented based on the past and recent values before it. This
is accomplished by reconstructing the time series using time delay embedding.
This method is used to transform the time series from a sequence to a tabular
format. The transformation based on time delay embedding leads to a data set
D ={(X, y)}. As described before, each observation y; is modeled according to
past ¢ values before it: X; = {y;—1,Yi—2,...,Yi—q}, where y; € ¥ C R. In effect,
y represents the target variable which represents the observation we want to
predict, and X; € X C R represents the i-th embedding vector. Then, we train
a multiple regression model f that can be written as y; = f(X;). This definition
is designed for one-step ahead forecasting. In Section 2.4, we describe how this
formalization is extended to the multi-step ahead case.

2.2 Ensemble Methods

The No Free Lunch theorem for supervised learning [23] postulates that no
learning algorithm is the most appropriate for all problems. All methods have
strengths and limitations. This is the key motivation for ensemble methods [6].
While ensemble methods are also amenable to this problem, they reduce the risk
of selecting a wrong model by combining multiple ones [13].

Ensemble methods aim at combining the output of several different predic-
tive models. These methods have been shown to perform better than individual
models in many tasks and domains of applications. A key aspect of developing
accurate ensembles is the diversity among individual models. The models com-
posing the ensemble should be accurate but different from each other. Brown et
al. [5] survey several methods to achieve this. In this paper, we focus on het-
erogeneous ensembles [14]. These ensembles are composed of individual models
which are trained with distinct learning algorithms, which is a typical way of
encouraging diversity.
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2.3 Dynamic Ensembles for Forecasting

Time series forecasting is one of the tasks in which ensembles have been shown
to provide state-of-the-art performance [3,9]. Time series data is amenable to
change due to sources of non-stationarity. Consequently, different forecasting
models usually show varying relative performance [1]. Aiolfi and Timmermann
study this phenomenon. They discovered that some models perform better than
others in some periods over a time series. This is the main motivation for using
dynamic ensembles for forecasting.

A dynamic ensemble combines the predictions of individual models using
weighted averages, where the weights change over time. The weights change
to adapt to the current process generating the time series. The main problem
when using dynamic ensembles is defining how to compute these weights at each
time-step.

Windowing and Regret-based Approaches. The static forecast combina-
tion approach which assigns equal weights to all available models is a robust
combination method [11] (Simple). Another static combination approach is a
weighted average, in which the weights are set according to the performance of
models in the training data (LossTrain). A variant of this approach is to select
the model with the best performance on the training data (Best). Notwithstand-
ing, dynamic combination rules are also typically used in forecasting problems.

Using past recent performance is a typical way of dynamically combining
ensembles. The idea is to give a higher weight to models that performed better
in recent observations (Window). This approach has shown promising results in
different works [15,7, 19].

Combining the output of multiple models is a well-studied topic in the online
learning literature [10]. Example methods include the exponentially weighted
average (EWA), the polynomially weighted average (MLpol), and the fixed share
aggregation (FS). These approaches are designed to minimize regret. Regret is
the average error suffered relative to the best error we could have obtained. We
refer the reader to the second chapter of the seminal work by Cesa-Bianchi and
Lugosi [10].

Meta-learning. Meta-learning is another type of strategy that can be used
to combine the output of multiple models. Arguably, the most popular meta-
learning approach is Stacking [22]. Cerqueira et al. [9] proposed a meta-learning
approach called Arbitrated Dynamic Ensemble (ADE) for dynamic forecast com-
binations. ADE works by building a meta-model for each model in the ensemble.
Each meta-model is designed to model and forecast the error of the correspond-
ing (base) model. Then, the models in the ensemble are weighted according to
the error forecasts provided by meta-models.
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2.4 Multi-step Forecasting

Multi-step ahead forecasting denotes the process of predicting multiple instances
of a time series. This task reduces the long-term uncertainty of time series, which
is desirable across many application domains. Several works have been devoted
to multi-step ahead forecasting problems [20, 21, 12].

In this section, we review several state-of-the-art approaches for multi-step
ahead forecasting. We split these into two types: single-output methods (Section
2.4), and multi-output methods (Section 2.4). Taieb et al. [20] are followed closely
to describe some of these methods.

Single Output Methods One of the most popular approaches to multi-step
ahead forecasting is the Recursive method (also known as the Iterative). Re-
cursive works by fitting a model f for one-step ahead forecasting (c.f. Section
2.1):

Yirr = f{¥isYi-1, - Yiqi1})

To get predictions for the next H observations, the model f is iterated H. To be
more precise, in the i-th time-step, {vy;, Yi—1, . .., Yi—q+1} is the input used to fore-
cast the value of y;11. Let §;41 denote that prediction. Then, {§;+1, yi,- .-, Yi—q}
is the input vector for forecasting ;12 in the same time-step. The Recursive
strategy is known to propagate errors along the forecasting horizon. Thus, this
approach requires an accurate model specification to work well.

Another popular multi-step ahead forecasting method is the Direct approach.
This strategy works by building a forecasting model for each horizon:

Yirh = fo{¥is Vi1, Yi—gt+1}),

where h € {1,..., H}. Since no model is iterated along the horizon, the Direct
approach does not suffer from error propagation. Notwithstanding, this method
leads to greater computational costs because it trains a model for each horizon.
Besides, it assumes that each horizon is independent, which is not generally true.

The method DirRec attempts to bridge the best aspects of Recursive and
Direct. Similarly to Direct, this approach builds one model for each forecasting
horizon. Moreover, for each successive horizon, the set of inputs is augmented
with the predictions from previous steps (following Recursive). This approach
is also referred to as classifier (or regression) chains in the machine learning
literature [18].

Multiple Output Methods As the name implied, single output approaches
model one horizon at a time. Thus, they do not account for the stochastic de-
pendency along the forecasting horizon. This aspect is taken into account by
multi-input multi-output (MIMO) models [20]. In this work, we also refer to
these approaches by multi-output models.

A multi-output model is trained on the complete forecasting horizon jointly:

[Z/z‘+1,yi+27 e 7yi+H} = F({yuyi—l, e ,yi—q+1}),
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where F' denotes the multi-output model. Essentially, there are H target vari-
ables instead of one, and these are modeled jointly by a single model.

Taieb et al. [20] compared several approaches for multi-step ahead forecast-
ing, including the ones described above. They used the 111 time series from the
NN5 forecasting competition. The main conclusion is that multi-output strate-
gies perform better than single-output ones. For this reason, we focus on multi-
output methods in this work. Notwithstanding, the dynamic ensembles used in
this paper can also be applied with other multi-step ahead forecasting strategies.

3 Materials and Methods

This section details the materials and methods used in this work. We describe
the data sets used in the experiments in Section 3.1. Then, we detail the method-
ology carried out to evaluate each approach (Section 3.2). We list all approaches
in Section 3.3, including learning algorithms, dynamic combination rules, and
different strategies for weighting models along the horizon. Finally, we detail the
experimental design in Section 3.4, including the cross-validation procedure and
evaluation metric.

3.1 Data

The experiments encompassed 3568 time series. These were collected from the
following 7 popular databases electricity_nips,nn5_daily_without_missing,
solar-energy, traffic_nips, taxi_30min, m4_hourly, and m4_weekly. Table
1 presents a summary of these datasets, including the number of time series and
their average length. Their name refers to the corresponding identifier in the
Python library gluonts [2].

Table 1. Summary of the data sets

Name Frequency # Time Series Avg. Length
electricity_nips Hourly 370 5833
nn5_daily_without_missing Daily 111 735
solar-energy Hourly 137 7009
traffic_nips Hourly 963 4001
taxi_30min Half-hourly 1214 1488
m4_hourly Hourly 414 960

m4_weekly Weekly 359 934
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3.2 Methodology

The goal of this paper is to analyze how several dynamic ensembles perform for
multi-step ahead forecasting problems. This is accomplished by carrying out a
set of experiments. For each time series in the case study (c.f. Section 3.1), we
apply the following procedure. The available time series is split into training and
test sets. As we describe below in Section 3.4, this process is repeated using a
cross-validation procedure.

The models in the ensemble are fit using the training data. As mentioned
in Section 2.3, pruning the ensemble usually leads to better forecasting perfor-
mance. In effect, we prune the ensemble and keep only the best 75% of models in
the available pool. The pruning process is carried out using a nested validation
procedure. The training set is further split into two parts: an inner training set
and a validation set. The inner training set contains 70% of the observations
of the complete (outer) training set. The validation set contains the final 30%
of the complete training set. All models are fit using the inner training set and
evaluated in the validation set. The 25% of models with the worst forecasting
performance are discarded. The remaining ones are re-fit using the complete
training set.

After the pruning and re-fitting process, the ensemble is applied to the test
set. A combination rule is applied to aggregate the predictions of all available
models. The list of all combination rules applied in the experiments is described
in Section 3.3. Note that we test these combination rules with different ap-
proaches concerning the estimation of weights across the horizon. We test four
strategies that are listed in Section 3.3. Finally, the performance of each method
is evaluated according to its performance in the test set. The evaluation metric
is described in Section 3.4.

3.3 Methods

This section details the methods used in the experiments. First, we describe the
regression learning algorithms used to create multi-output forecasting models
(Section 3.3). Then, we describe the 9 methods used to combine the predictions
of those models (Section 3.3). Finally, we detail four different approaches to
compute the ensemble weights across the forecasting horizon (Section 3.3).

Learning Algorithms The ensembles used in the experiments are composed
of 40 individual multi-output models. These were created using the following
learning algorithms: random forest regression, extra trees regression, bagging of
decision trees, projection pursuit regression, LASSO regression, ridge regression,
elastic-net regression, k-nearest neighbors regression, principal components re-
gression, and partial least squares regression. We used the implementation in the
scikit-learn [16] Python library to use these methods. Table 2 describes the dif-
ferent parameters used for each learning algorithm. In total, there are 40 different
learning approaches.
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Table 2. Summary of the parameters of the learning algorithms

ID Algorithm Parameter(s) Value(s)
BAGGING_1 ) - ‘ ‘ 50

BAGGING_ 2 Bagging of decision trees No. trees 100

RF_1 {50, default}
RF_2 {50, 3}

RF_3 ) {50, 5}

RF 4 Random Forest {No. trees, max depth} {100, default}
RF_5 {100, 3}
RF_6 {100, 5}

ET_1 {50, default}
ET_2 {50, 3}

ET_3 . i . {50, 5}

ET 4 Extra trees regression {No. trees, max depth} {100, default}
ET_5 {100, 3}
ET_6 {100, 5}
KNN_1 {1, uniform}
KNN_2 {5, uniform}
KNN_3 {10, uniform}
KNN_4 {20, uniform}
KNN_5 . . . . {50, uniform}
KNN_6 K-nearest neighbors {K, weight} {1, distance}
KNN_7 {5, distance}
KNN_8 {10, distance}
KNN_9 {20, distance}
KNN_10 {50, distance}
PPR Projection pursuit regression default
LASSO_1 {1}

LASSO_2 o {0.75}
LASS0_3 LASSO regression {regularization} {05}
LASSO_4 {0.25}
RIDGE_1 {1}

RIDGE_2 . » o {0.75}
RIDGE_3 Ridge regression {regularization} {0.5}
RIDGE_4 {0.25}

EN Elastic-net regression default

PLS_1 2

PLS_2 Partial least squares regression No. components 3

PLS_3 5

PCR_1 2

PCR_2 Principal components regression No. components 3

PCR_3 5

Forecast Combination Methods In terms of forecast combination methods,
we focus on the following approaches.

— Simple: Combination rule which assigns equal weights to all models. In prac-
tice, the predictions of the available models are combined using the arith-
metic mean;

— Window: Dynamic weighted average of the predictions of the available models
[15]. The weights are computed according to the forecasting performance in
the last A observations;
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Blast: A variant of the Window approach [19]. Instead of using past recent
performance to weigh the available models, the idea is to select the model
with the best performance in the last A observations;

ADE: A dynamic combination approach based on a meta-learning strategy
called arbitrating [9]. The idea is to build a meta model (a Random Forest)
for each (base) model in the ensemble. Each meta model is designed to
predict the error of the corresponding base model. Then, the models in the
ensemble are weighted according to the error forecasts. We refer to the work
by Cerqueira et al. [9] for a complete read on this method,;

EWA: A dynamic combination rule based on an exponentially weighted aver-
age. This method follows the popular weighted majority algorithm [10];

FS: The fixed share dynamic combination approach. This method is designed
to handle non-stationary time series;

MLpol: A dynamic combination method based on a polynomially weighted
average;

Best: A baseline which selects the individual model in the ensemble with
the best performance in the training data to predict all the test instances;
LossTrain: Another baseline which weights the available models based on
the error on the training set. The weights are static and fixed for all testing
observations;

Most of these combination approaches are dynamic to cope with the non-

stationarities present in the time series. The exceptions are LossTrain and
Simple. We followed the study by Cerqueira et al. [9] to set the value of the
A parameter to 50 observations.

Weighting Approaches Over the Horizon Dynamic ensemble methods typ-
ically assume immediate feedback. They are designed only for one-step ahead
forecasting. Thus, it is not clear how the ensemble weights should be computed
along the forecasting horizon. We study the following approaches to estimate
the weights at each time-step:

Complete Horizon (CH): The weights of individual models are estimated
using their average performance over the complete forecasting horizon;
Individual Horizon (IH): The ensemble estimates different weights for
each horizon;

First Horizon Forward (FHF): The weights computed for the first horizon
are propagated over the rest of the horizon;

Last Horizon Backward (LHB): For completeness, we include the inverse
approach to FHF. According to LHB, the weights computed for the last horizon
are propagated backward to all horizons before it.

We test all these variants with the combination rules presented above. The

exception is Simple, whose weights are static and not dependent on forecasting
performance. This leads to a total of 33 variants for analysis.
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3.4 Experimental Design

We estimate the forecasting performance of models using a Monte Carlo cross-
validation procedure [17], which is also referred to as repeated holdout [8]. This
estimation method is applied with 10 folds. The training and test sizes of each
fold are set to 60% and 10% of the size of the input time series, respectively.
Monte Carlo cross-validation provides competitive performance estimates rela-
tive to other approaches [8].

We preprocess each time series as follows. We take the first differences to
remove the trend. Then, we apply time delay embedding to transform the series
for auto-regression. We set the parameter ¢ (the number of lags) to 5. This
means that the future values of a time series are modeled based on the previous 5
observations. Finally, we set the maximum forecasting horizon to 18 observations
(H = 18). The mean absolute error (MAE) is used as the evaluation metric. This
metric has the limitation of being scale-dependent. However, we will focus on
ranks and percentage differences to compare results across multiple time series.

4 Experiments

This section presents the experiments conducted to compared different forecast
combination methods. These are designed to address the following research ques-
tions:

— RQ1: How do the dynamic ensemble methods compare with each other in
terms of their rank across all data sets?

RQ2: What is the best approach for computing the weights along the fore-
casting horizon?

RQ3: How does each dynamic ensemble method compare with a static en-
semble that assigns equal weights to all models?

— RQ4: Does the forecasting horizon affect the results obtained?

4.1 Results

RQ1 Figure 1 shows the average (mean) rank, and respective standard devia-
tion, of each method across the 3568 time series. An approach gets a rank of 1
in a given data set if it shows the lowest error. The best approaches are variants
of ADE, Window, and MLpol. On the other hand variants of Blast, Best, FS, and
EWA occupy the bottom positions. All methods show a considerable standard de-
viation of rank. This corroborates the idea that no method dominates over the
rest.

RQ2 Figure 2 illustrates the average rank of all methods but aggregated by
weighting strategy. This analysis uncovers interesting outcomes. Varying the
weighting strategy (FHF, LHB, IH, CH) does not have a significant impact in aver-
age rank. On the other hand, different combination approaches show significantly
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Fig. 1. Average rank, and respective standard deviation, of each method across all time
series.

different scores. For example, ADE shows better performance relative to Best ir-
respective of the weighting strategy. The two best forecast combination methods,
ADE and Window, show similar behavior in terms of relative scores for the differ-
ent weighting strategies. Their best score is achieved with FHF, followed by IH.
Conversely, the worst combination approaches, namely Blast, Best, EWA, and
FS, have their best score when coupled with CH.

RQ3 So far, the results were analyzed according to the average rank. However,

average rank ignores the magnitude of differences in predictive performance [4].

To overcome this limitation, we also study the percentage difference in perfor-

mance between each method and a reference method. We set Simple as the

reference method, which assigns equal weights to the models in the ensemble.
For each method m, the percentage difference is computed as follows.

MAEm - MAESimple

1
00 > MAESimple

where MAE, and MAEg;ppe represent the MAE of method m and Simple, re-
spectively. Negative values denote better performance by method m.

Figure 3 depicts the distribution of the percentage difference in MAE be-
tween each method and Simple. The methods are ordered by decreasing median
percentage difference in MAE.

The order of the methods is similar to that obtained in the previous analyzes.
Only ADE_FHF and Window_FHF show a median performance difference below

zero. This indicates that Simple outperforms the other dynamic combination
methods more times than not.
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Fig. 2. Average rank of each method, aggregated by weighting strategy.

RQ4 The analysis presented so far quantifies the performance of each method
for long-term forecasting. Specifically, predicting 18 step in advance. However,
long-term forecasts are typically less accurate than short-term ones. We analyzed
the impact of the forecasting horizon in the results obtained.

Figure 4 shows the average (median) percentage difference of each method
relative to Simple over the forecasting horizon. As before, the average is com-
puted across the 3568 time series.

The figure shows a clear trend which indicates that the methods decrease
their performance relative to Simple as the forecasting horizon increases. For
t+1 (one-step ahead forecasting), 5 out of 8 combination methods outperform
Simple. But, for long-term forecasting (t+18), only two methods achieve better
performance. It is also interesting to note that there are slight changes in the
relative performance of methods. For example, for t+1 Window_FHF is only the
fourth best approach (ADE_FHF shows the best average rank). However, by t+18,
Window_FHF shows the best score.

5 Discussion

This paper investigates the performance of several dynamic ensembles for multi-
step ahead forecasting problems. We focus on ensembles composed of multi-
output models. Notwithstanding, the combination rules tested in this work can
also be applicable to models following a different strategy regarding multi-step
ahead prediction (c.f. Section 2.3).

The main motivation for this work is that the literature concerning dynamic
ensembles for forecasting is focused on one-step ahead predictions. Most ap-
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Fig. 3. Distribution of percentage difference in MAE between each method and Simple
across all time series. Negative values denote better performance of the respective
method.

proaches assume immediate feedback from the environment to compute the er-
ror of each method. Previous works concerning dynamic ensembles for multi-step
ahead forecasting are scarce. This gap raised important questions about how to
properly weigh individual models across extended forecasting horizons.

The results from the experiments provide several insights. We found that
while all methods demonstrated considerable variability across different time
series, variants of ADE and Window consistently achieved the best average rank
(RQ1). This suggests these approaches are more robust when applied to multi-
step forecasting tasks. Regarding weight computation across the forecasting hori-
zon (RQ2), our comparison of four different approaches revealed no statistically
significant differences in performance. However, the FHF strategy (which prop-
agates weights computed for one-step ahead predictions) maximized the effec-
tiveness of the best-performing methods.

When compared to a static ensemble using equal weights for all models
(RQ3), only two methods (ADE_FHF and Window_FHF) showed systematic per-
formance improvements. This finding is particularly noteworthy as it suggests
that many dynamic approaches fail to outperform the simple averaging approach
in multi-step contexts. We also discovered that the forecasting horizon signifi-
cantly affects the relative performance of dynamic ensembles. All methods de-
crease their performance relative to Simple as the forecasting horizon increases
(RQ4).

These findings have important practical implications. For short-term fore-
casting applications, dynamic ensembles such as ADE_FHF or Window_FHF may
be advantageous. However, for longer forecasting horizons, competitive results
can be obtained with simpler approaches such as equal-weight averages.
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Fig. 4. Median percentage difference of each method relative to Simple in each fore-
casting horizon.

We remark that the results obtained may be dependent on the particular
experimental setup used, including hyperparameters (e.g. forecasting horizon)
and forecasting methods. We focus on various machine learning multi-output
regression algorithms employed using auto-regression. Nonetheless, many other
forecasting methods exist in the literature, from classical forecasting approaches
such as ARIMA to various neural networks architectures that have been showing
state-of-the-art performance in benchmark datasets.
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