Towards a Library for the Analysis of
Temporal Sequences

Thomas Guyet! (5<)[0000-0002-4909-5843] 514 Arnaud
Duvermy-2[0009-0002—8509—5506]

1 AlstroSight / Inria, HCL, UCBL
{thomas.guyet,arnaud.duvermy}@inria.fr
* Fondation APHP

Abstract. This article introduces TanaT, an open-source framework for
temporal sequences analysis. Temporal sequences are made of complex
events, described by qualitative and quantitative features, with a con-
tiguous temporal footprint. Such kind of data are encountered in a wide
range of applications (medicine, social science, traces analysis, education,
etc.) and their analysis requires taking into account the longitudinality of
the data. The proposed framework aims to empower data analysts with
a coherent toolbox for handling such temporal sequences at all stages of
the analysis process: data loading, data pre-processing and transforma-
tion, data analysis and data visualization. In this article, we introduce
our framework, focusing on the distance-based clustering of temporal
sequences. The complex nature of temporal entities requires versatility
in defining distances between sequences and we highlight how TanaT
addresses this challenge. https://gitlab.inria.fr/tanat/core/tanat

Keywords: Trajectory analysis - Data wrangling - Clustering - Metrics.

1 Introduction

With the continuous acquisition of increasingly large volumes of information, the
analysis of temporal data has been attracting growing interest. In this work, we
focus on temporal sequences (also referred to as trajectories [12], or as complex
event sequences). Temporal sequences refer to event-based data where event oc-
currences are time-stamped and each event is described by attributes that may
be either numerical or categorical. Such data arise in a variety of application
domains, including computer logs analysis, life course analysis in the social sci-
ences [5], career trajectory analysis [20], education [24], or patient care pathway
analysis [21]. The temporal dimension contains rich information that is essen-
tial for understanding the dynamics of the underlying system or for supporting
accurate and timely decision-making. In return, temporal sequences introduce
additional challenges compared to classical tabular data or numerical time series
data. Analyzing such data using tools originally designed for tabular formats is
not always appropriate —either because the data can not be easily represented
in tabular form, or because the assumptions of those analytical methods does

https://gitlab.inria.fr/tanat/core/tanat

2 T. Guyet et A. Duvermy

not suit temporal data. It thus appears necessary to develop a dedicated suite
of tools specifically designed for the analysis of temporal sequences.

In various applications presented above, there is a shared interest in descrip-
tive analysis, and especially in discovering groups of similar temporal sequences.
This aims to uncover typical behaviors observed in a dataset. In this clustering
problem, one important question is to define what “similar” means. Given the
multifaceted nature of temporal sequences, clustering them —and designing ap-
propriate distance metrics— has led to a wide range of approaches [TTO/T7I2T126].
Similarly to what has been developed for time series [IT528|, we strongly ad-
vocate for letting data scientists choose or build a dissimilarity metric that suits
their own data and analysis needs. Our challenge is to propose a versatile frame-
work to empower analysts with tools to fast prototyping and benchmark different
metrics and clustering techniques.

In this paper, we introduce TanaT (Temporal Analysis of Trajectories), a
Python library for the analysis of temporal sequences. The goal of this library
is to provide a comprehensive set of generic tools for the analysis of temporal
sequences. The remaining of the article is organized as follow. The next section
will position TanaT with respect to state-of-the-art libraries dedicated to tem-
poral data analysis. Then, we provide an overview of the library, detailing our
data model and illustrating its current main functionalities. Section [f] introduces
the concept of dissimilarity metrics in TanaT. Finally, we illustrate TanaT with a
use case about healthcare trajectories and exemplifies the coding principles that
enable its versatility and efficiency.

2 Related Works

The objective of this section is to present a comprehensive review of existing
libraries and frameworks for temporal data analysis. In this review, we identified
four different types of functionalities for a data analysis toolbox:

— Data preprocessing (a.k.a. data wrangling or ETL),

— Data visualization,

— Machine learning methods (classification, clustering, forecasting, etc.),
— Batch processing (e.g., pipelining, hyperparameter tuning, AutoML).

We believe that the first three functionalities must be integrated to estab-
lish a complete environment that covers most data analysis needs. The fourth
functionality is beneficial for automating parts of the data analysis process, par-
ticularly for complex pipelines or the reproduction of similar studies.

To the best of our knowledge, there is no comprehensive Python package
offering such a framework for temporal sequences.

2.1 Time Series vs Temporal Sequences

The literature generally distinguishes between two main types of temporal data:
time series and temporal sequences. Time series (univariate or multivariate) refer

Towards a Library for the Analysis of Temporal Sequences 3

to regularly sampled numerical data. This type of data is already supported by a
rich Python ecosystem of analytical libraries, including tslearn [28], acon [17],
darts, and Greykite [9], among others. These libraries organize and implement
specific machine learning methods for time series. Preprocessing and visualiza-
tion are ensured by standard numerical toolboxes (in Python: NumPy, SciPy,
Matplotlib, etc.).

Nonetheless, temporal sequences are of a different nature. Temporal sequences
refer to event-based data where event occurrences are time-stamped and each
event is described by attributes that may be either numerical or categorical.
While it is sometimes possible to transform temporal sequences into time series,
this transformation is rarely trivial and requires dedicated tools to simplify the
process. Moreover, temporal sequences often call for specific analyses that can-
not be directly applied to time series representations. The objective of TanaT is
to complement existing time series libraries by providing tools designed for data
structured as temporal sequences, as well as tools to convert sequences into time
series when needed.

2.2 Standard Machine Learning vs Tailored for Temporal Sequences

To date, there are only a few libraries that provide machine learning methods
for this type of data. We identified in the literature two different approaches to
support data scientists in their analysis of temporal sequences. The first type of
approach is to flatten temporal sequences in order to prepare them for applying
a standard machine learning algorithm. The other type of approach is to design
new algorithms tailored for temporal sequences.

Tools designed for the first class of approaches provides mainly data wran-
gling tools. For instance, MEDS—Talﬂ or MEDS [I] are libraries designed for
sequence “tabularization” or “flattening”. They propose tools to transform, fil-
ter, aggregate, the raw data. For these libraries, the pipeline of transformations
yields tabular datasets that can be analyzed with standard machine learning
algorithms. ESGPT (Event Stream GPT) [14] is also a data pre-processing and
modeling library for continuous-time sequences of complex events. Contrary to
the previous approaches, it is designed specifically to prepare data for the appli-
cation of transformer-like deep learning architectures. The pre-processing focuses
more on the collection of the sequences (queries to filter out sequences from the
collection) than modifying the content of the sequences. Its advantage is to build
a memory-efficient deep learning representation of sequences. Similarily, Tempo-
rTA [25] is a machine learning-centric toolbox for temporal data in medicine. It
proposes a data model that includes time series, static features, and also events.
The typical workflow of TemporIA contains data transformations and sequential
(deep/shallow) machine learning models for classification tasks.

These libraries have been designed mainly for analyzing Electronic Health
Records (EHR) datasets. The only generic framework is Temporianﬁ It is a

3 https://meds-tab.readthedocs.io
4 https://temporian.readthedocs.io

https://meds-tab.readthedocs.io
https://temporian.readthedocs.io

4 T. Guyet et A. Duvermy

Python library for simple and efficient preprocessing and feature engineering of
temporal data in Python. Similarly to the pandas library for tabular datasets,
it proposes a set of wrangling tools for temporal sequences at a low level and
thus can be used to prepare datasets for machine learning. Temporian supports
multivariate time-series, temporal sequences, and cross-source event streams,
but again it is more developed for time series. Finally, we can mention that
foundation models [30] are also a kind of preprocessing for temporal sequences.
In our work, we do not explore this direction due to their lack of interpretability.

Some other libraries choose to integrate methods that analyze data repre-
sented as temporal sequences. The most prominent library is TraMineR [5]. It is
developed in the R environment and is specifically tailored for data represented
as sequences of States It has been designed for analyzing data in social sci-
ence and is now used in a wide range of applications (health, education, etc.).
The success of this library is notably due to 1) its flexibility in defining metrics
between sequences and 2) its coherent collection of tools (visualization, descrip-
tion, metrics, and clustering). Unfortunately, the R environment is not always the
most used by data scientists. A translation has been proposed in Stata [§], but
none for the Python environment, which is becoming more and more popular.
One ambition of TanaT is to transfer and enrich the functionalities of TraMineR
in a Python environment. More specifically, we noticed that modeling temporal
data as state sequences may be restrictive in practice, and extending the data
model is a core proposal of TanaT.

Another prominent framework is developed around the notion of Multiple
Aspect Trajectory (MAT) [23], which includes semantic and spatial dimensions.
This representation is close to the concept of “semantic trajectories”, which in-
corporate a semantic layer into the description of trajectories [19/2]. The MAT
framework is both a data representation and a collection of tools, including clus-
tering [22], for this kind of data. The framework uses semantic web technologies
and provides web interfaces. Such interfaces are probably too restrictive for data
scientists who explore a dataset, and they would probably prefer a programming
interface offering more versatility.

2.3 Interactive Analysis vs Batch Execution

We also identified that there are different levels of interactivity with the data. On
the one hand, the complexity of the data at hand increases the interest in visual-
izing and interacting with them. On the other hand, in a field such as healthcare,
in which the analyses have to be reproduced, sometimes on massive data, inter-
activity is replaced by the possibility to create scripts describing a pipeline of
processes that will be run in batch, without user interaction. Visualization and
visual analytics are also important dimensions for the analysis of temporal se-
quences. ESeVis [32] is an event sequence visualization framework. The article
presents a review of visualization approaches for event sequence data. They con-
clude on the opportunity to integrate visual analytics and process mining tools

5 We will revisit this notion of state in Section

Towards a Library for the Analysis of Temporal Sequences 5

Data type ; Machine learning methods ; I Interactivity ; Language
Time series;'l‘emporal sequences| Tabular ML;'I‘ailored .\IL;Recurrent DL\.\Ietrics\Visualization;Scripting\Python;Other
T T T T
| g | v | v [Vo
v 4

tslearn [28]
acon [I5]
TraMineR [5)
MAT [23]
MEDS-Tab
YAIB [29]
TemporAl [25]
MEDS [1]
ESGPT [14]
FIDDLE [27]
ACES [31]
Temporian
ESeVis [32]
EventAction [3]
EventFlow [16]
Coco [13]
TanaT (ours) ! ! v ! v ¥ v 2

Table 1. Characteristics of state-of-the-art frameworks for temporal data analysis.
v’ indicates functionalities provided by a framework, X indicates those that seem not
possible within a framework, and v indicates functionalities obtained by planned con-
nections with alternative frameworks. The last columns correspond to various environ-
ments such as Bash, R, or GUI

ANAN

b4 v

v

N X %
AN

v

AN
AN
AN NN
AN

<
AR NN NN NN

:	:	:			
:	:	:			
H	H	H			
:	:	:			
\ v	\	\			

ANANAN

SNSISSSSSSNSNNSNSNSNANASNS

SNISSSS %X %%
N[> X X X%

in a unique framework. Such an approach of integrating visualization and data
analytics leads to the proposal of visual analytics tools, such as EventAction [3],
EventFlow [I6], or Coco [13]. These approaches are easy to use for end-users;
they allow conducting complex data analysis, such as clustering, without requir-
ing specific skills in data science, but they are not versatile. The interfaces are
designed to conduct one specific type of analysis and, more specifically, they do
not allow the user to specify how to compare sequences. TanaT aims to include
data visualization (instance and populational visualization) to support the user
along their data analysis (in a notebook, for instance), but it is not made for
interactive data analysis.

On the opposite side of interactivity, frameworks for creating processing
pipelines have emerged in recent years, especially for EHR data. Indeed, one
specificity of these data is their reusability for multiple studies. Tools to ease
the reusability or reproducibility of studies make data scientists more efficient.
ACES [31] has been proposed with these objectives and it defines a flexible task
configuration language that enables defining diverse sets of prediction tasks on
an event-stream dataset. YAIB [29] provides a framework for conducting clin-
ical machine learning experiments on Intensive Care Unit (ICU) EHR data.
It proposes recurrent neural network architectures to analyze sequential data.
MEDS [I] also proposes a framework to run sequential machine learning models
on various EHR datasets through a metadata schema. It also proposes to track
the provenance of transformations to inform the trained models. Nonetheless, the
preprocessing in YAIB or MEDS are not explicitly described in their pipeline.
TemporAl [25] also proposed to implement workflows, but it seems less flexible
than the previous methods. FIDDLE [27] is an interesting framework that allows
making (low-level) preprocessing to prepare temporal data for machine learning
tasks. The main difference with TanaT is the modeling of temporal sequences

6 T. Guyet et A. Duvermy

as tensors. This representation discretizes time and thus loses some precious
information about durations.

To conclude this section, Table [[] summarizes some properties of the main
frameworks we reviewed.

3 Overview of TanaT

TanaT is a flexible toolbox for handling various types of temporal sequences. It is
an open-source project available on gitlab (https://gitlab.inria.fr/tanat/
core/tanat). Figure [1] illustrates the organization of the library into modules
and their connections with each other and with external standard libraries. The
library currently comprises four main modules:

— Temporal sequence representation is the core of the library. It imple-
ments classes to represent temporal sequences and trajectories (cf. section
. Our classes are built on top of pandas for the sake of efficiency and
versatility. This module comprises input-output routines: the loading of ex-
ternal raw data is possible from Pandas dataframes or through requests to
a database; we provide several formats to export the internal representation
for alternative machine learning libraries: tensors, graphs, tabular and time
series[]

— Data preprocessing comprises a set of low-level preprocessing tools —
selection of individuals, filtering of events, (static) feature engineering, etc.
These tools transform the trajectory pools into other trajectory pools.

— Visualization: this module offers visualization of trajectories at individual
or population levels. Visualizations are based on the Matplotlib framework.

— Metrics/Clustering: these modules are dedicated to the clustering of tra-
jectories. TanaT allows specifying versatile dissimilarity metrics and imple-
ments clustering methods, primarily derived from sklearn, to cluster se-
quences or trajectories using the metrics defined by the user.

All preprocessing steps, including metrics definition and data analytics, can
be used as an API to create interactive computational notebooks or in Python
programs. At the same time, we also provide a domain-specific language to rep-
resent pipelines of processes (in YAML format). This enables TanaT to cover all
the needs of a data scientist. On the one hand, the API enables the exploration
of data by quickly writing some preprocessing steps, visualizing intermediate
results, evaluating algorithms, etc. On the other hand, once the pipeline of pro-
cessing from raw data to the data analysis results has been clearly defined, it can
be reified into a workflow (coded as a YAML file) and executed from the com-
mand line. This enables the data scientist to share the processing (transparency)
and to apply it to alternative databases, for instance (reproducibility).

5 More specifically, TanaT does not aim to reimplement deep learning models (e.g., re-
current neural networks), but it provides the possibility to transform the trajectories
into a format to apply the user’s favorite models.

https://gitlab.inria.fr/tanat/core/tanat
https://gitlab.inria.fr/tanat/core/tanat

Towards a Library for the Analysis of Temporal Sequences 7

e ————————————— - - ~. ===~
4 \\ , (Termporal) \\ 1 H
1 Raw data K e s PyTorcl 1 1
1 1 — ylorcn 1 1
I Pandas dataframe with date 1 : 1} T Fl I wlifom |
sbjec 4 tine 1 . ¢ TensorFlow 1 H
b e ot ; i Toe et v YDAl
1M 20O BB RGN ASRIRONROAL 1 INGe o 1
b 2 oosost 2rseosozozcn 21340823 193500 URGENT TRANSIER FROM HOSPITAL PO i S v — I

I 3 tooososs 2stisttazzascn 2111911 172000 uncent Taansrerrommosera | 1 AN . (Temporal) graphs n »

| ¢ tomm 21aanodtsdsce 21130806205700 uncenT TranspERFromHosPTAL | 1 3 So g ©.° y I =

] o . { <)

1 1 1 e ° [1 o

H T 1 n ° e Qllearn |: i

0 10014729 Foa /I - =

1 1o ¢ 1 y Flatten == = >] g

1 B@TD 5O 1 | tabular data = - = n oz

[5 mm b o ,' H | — :l °

\ . " ! 1 . 1 c

Pandas dataframe with static data " o

: b edlitid, — AE0N it

\ WM 7 hs3

) - & 1 >

N Time series ’ <

~ -)

<

8

P ——— - N @ =

Trajectory data '

Workflow orchestration

YAML declaration description of

anaT workflows

]
: [
internal representation 1
1 (P i [(@)]
! e N 1 1
e 2 , | - trajectories 1 : | Trajectory-specific clustering algorithm(s)
1 - B : - static features » 4\ {
(- ° — -indexdate p I g : ;
\ <2 7 i Survival Analysis
N e e e e e i e SN e e D=~ 3
AN

- pattern-based trajectory selection
- event filtering (query based)
- (static) feature engineering

Data visualization

Individual visualizations

Populational visualizations

1 -
1
\

Fig. 1. Illustration of the TanaT ecosystem: TanaT modules and connections with ex-
ternal libraries. The core of TanaT is the representation of trajectories (purple square),
which can be imported from structured data (Pandas dataframes or databases) and ex-
ported in other classical machine learning formats (green frame). Libraries for analyzing
trajectories comprise the library of data wrangling (yellow square) to transform trajec-
tories; different trajectory analysis tools: clustering, survival analysis (prediction tasks
are for future developments). Analyses are complemented with a data visualization
module (in dark blue). Finally, the grey square illustrates the transversal capabilities
to represent an analysis pipeline within a YAML file to be executed in batch.

4 TanaT Data Model

We introduce the core data structures of TanaT. The library is designed to be
extensible, and other modules/data structures could be added in the future. This
section concludes with the conceptual data model (see Figure [5)).

4.1 Entities, Sequences, and Trajectories

The TanaT library distinguishes three different types of temporal data structures:
temporal entities (the atomic unit), sequences, and trajectories.

The fundamental structure for representing temporal data is the temporal
entz’tym An entity describes something that has occurred for an individual and
has a temporal extent.

7 We use the term “temporal entity” rather than “event” since the latter is reserved in
our framework for a specific subtype of temporal entity, i.e., those with zero duration.

8 T. Guyet et A. Duvermy

MO

t > -)
2, o Ry, 02, 2,

705 7o 75 72 7.2
Fig. 2. Illustration of a sequence of events. Each colored-shape represents an event.
The event type of an occurrence is represented by a symbolic feature (letters A, B or
C). Each event type as a color. The y position has no specific meaning here.

— The nature of an entity is described as a vector of features (qualitative
or quantitative). At least one descriptive feature must be defined. In the
simplest case, an entity is represented by a symbolic value drawn from a
vocabulary, i.e., a categorical feature.

— The temporal extent of an entity is defined by a timestamp or a time interval.
In TanaT’s temporal model, all entities are timestamped using calendar dates
and/or times. Time representation can be integers, floating-point numbers
or date-time format. In addition, there is no fixed time scale: TanaT can han-
dle time resolutions ranging from nanoseconds to geological eras, depending
on the dataset. In our motivating examples, such as care trajectories, the
granularity is typically daily.

A sequence is the primary structure for representing collections of entities.
All entities within a sequence must share the same type of temporal extent (e.g.,
point events, intervals, or states) and the same set of descriptive features.

Ezample 1. Figure [2]illustrates a sequence composed of four instantaneous enti-
ties. Each entity type is denoted by a symbol (e.g., A, B, C, D). All entities share
a single categorical feature. They are displayed along a timeline to highlight their
temporal positions.

The sequence may contain multiple entities with the same feature value (e.g.,
A), and distinct entities may occur at the same timestamp. The only constraint
is that two identical entities (with the same descriptive features) cannot occur
at the exact same time.

A trajectory is a more complex structure that models a multi-sequence object
for a single individual. Each component sequence may differ in terms of features
and temporal extent. This allows trajectories to capture heterogeneous types of
temporal information.

For example, a trip might be represented as a traveler trajectory comprising:

1. weather conditions (a state sequence, see next section for details),
2. visited cities (an interval sequence), and
3. points of interest visited (an event sequence).

Ezxample 2. Figure [3] shows a trajectory consisting of three sequences of differ-
ent types: two event sequences and one interval sequence. Each sequence has a
distinct feature set.

Towards a Library for the Analysis of Temporal Sequences 9

®

T
|
]
t
|
1
|
|
[

Sequence type 1

Sequence type 3

<0 25 ,
7.

[}
<0
22, 5
0, 3

07

Fig. 3. Illustration of a trajectory with the three types of sequences.

A trajectory can also include static features (i.e., attributes not associated
with a temporal extent). In the context of care pathways, static features may
include birth date, gender, chronic conditions, etc. These are represented as key-
value pairs.

4.2 Types of Temporal Support

TanaT currently supports three main types of temporal sequences, as illustrated
in Figure [4

— Event sequences: entities are point-based in time (e.g., a medical appoint-
ment).

— Interval sequences: entities span a duration (e.g., an hospital stay). Inter-
vals may overlap, and gaps between successive intervals are allowed. Degen-
erate intervals (with identical start and end times) are permitted.

— State sequences: entities also span time intervals but are mutually exclu-
sive. There is exactly one state active at any point in time. This imposes
contiguity between intervals and enforces that two successive intervals have
distinct feature values.

The notion of state was introduced by TraMineR [5], and we implement this
representation primarily for compatibility with analyses typically conducted by
users of this library.

Timestamps are internally represented as dates. We have added the possi-
bility to define an index date, i.e., a reference point in time specific to each
individual, that allows the temporal position to be expressed as a delay relative
to this reference. An index date is typically defined as the first occurrence of a
specific event.

4.3 Object Collections

In TanaT, a collection of sequences or trajectories is referred to as a pool. Each
object in a pool represents an individual (a patient, a traveler, a student, etc.),
and all individuals are described using the same structural schema, i.e., same
types of sequences, temporal support types, and feature sets, both temporal and
static.

10 T. Guyet et A. Duvermy

I I | I
Event : ! @ : :
sequence <6\> . @n @ |
| | | |
] | [} | [}
| | |
mteval L] . [H
sequence | I ' K | | i : |
I | I I T
I 1 1 1 T
State : *
X LY | VA |
sequence , : , ,
I |] | I
025 02y oy 02y 2
77 72 97 0 a3,
0y 0y 0y 0y 0y

Fig. 4. This figure illustrates the various types of temporal supports modeled in TanaT.
From bottom to top: events, intervals, and states.

The pool object is intended for efficient operations over collections of trajec-
tories or sequences, enabling optimized computations and collective analyses.

Figure[5] provides a conceptual overview of the data organization in the TanaT
library (except static features). The central backbone highlights the core trio —
trajectory, sequence, and entity— which is instantiated (on the right) into the
various types of sequences. On the left, the concept of a pool is illustrated, while
the bottom part details the components of an entity, including features (defined
at the sequence type level) and the temporal extent.

i,

R
7
\

associated to

associated to

@’ -

contains
"

Event
sequence

-7 Interval
B sequence

- . State

sequence

1

ins
AN
|
i
—t
SUIRIUOd
T
I
I
i
|
—

1
SUrRIUOd

contal

hasExte;

S
£
%»
AA
P! N
! \
\
Lo
|
\ \
|
\
! \
ht
L
i
\
|
\
I
‘
I
\
I
i
|
|
I
NN
|
-
e Surejuod

hag,
%
hag,
%
et
M
hasVal
hasExtent
fasbixtent
4 m“aﬁ?ﬁ |
)
%

,‘%
// A
i

/
i
i

;
|

’
'
|
|
|
l
\
v
\
\

Fig. 5. Conceptual data model in TanaT (see text for explanation).

Towards a Library for the Analysis of Temporal Sequences 11

5 Temporal Data Wrangling

Raw data is rarely directly usable for analysis. Cleaning and structuring such
data is essential to obtain meaningful and relevant results. Whereas alternative
libraries typically require pre-processing before representing data as sequences,
the philosophy behind TanaT is to represent data directly as temporal sequences
and to manipulate them using TanaT’s dedicated wrangling tools, which are
designed to be both expressive and intuitive.

For instance, in the context of an epidemiological study, a standard procedure
involves identifying the subset of individuals to include in the study and then
extracting their characteristics for descriptive analysis. This description may
take the form of a trajectory composed of events relevant to the analysis, or of
static features derived from longitudinal data.

TanaT supports these preprocessing steps through generic tools for selecting
individuals, labeling séquence, and filtering entitiesﬁ Sequence labeling consists
in assigning static information to individuals based on all their available data,
including sequences. This notably enables feature engineering to apply machine
learning methods to tabular data (i.e., static data across the entire population).

These tools are designed to be both generic and flexible, allowing analysts to
configure filtering and selection criteria using customizable patterns.

The current pattern language supports the specification of the occurrence
of a given event. The library is designed to be extensible and to accommodate
other pattern semantics. In particular, we plan to introduce patterns inspired by
the notion of chronicles [6], enabling selection capabilities that are not possible
with traditional dataframe-based representations.

6 Clustering Trajectories

This section presents the modules develop to conduct metric-based clustering of
trajectories. In many data analysis, clustering is an important step to describe
the data at hand. In the case of trajectory data, we would like to propose a
versatile framework, similar to those proposed for time series [I528]. This implies
first to give the user the possibility to specify a metricﬂ

TanaT provides a broad collection of metrics that can be easily tested and
compared to identify the most appropriate choice for a given task. The hierar-
chical representation of sequential data in TanaT has led us to define metrics for
the three main types of objects being manipulated.

— First, defining a metric between entities enables the quantification of differ-
ences between their attributes. When attributes are numerical, an Euclidean

8 The construction of new events is a planned feature for future versions of the library.

9 It is important to note that the term “metric”, as used in the library, refers to a
dissimilarity measure, which does not necessarily satisfy all the mathematical prop-
erties of a distance. Similarly, the term “metric space” refers to a space equipped
with such a measure.This terminology differs from the strict mathematical usage
but is commonly accepted in time series libraries.

12 T. Guyet et A. Duvermy

distance can be used; for categorical attributes, Hamming distance or a cost
matrix is more appropriate. TanaT allows users to define custom entity-level
metrics to adapt to specific requirements.

— The dissimilarity between sequence is obtained by aggregating pairwise en-
tities dissimilarities. For sequences, a wide range of solution to aligning se-
quences of temporal entities. In the current version, we have focused on
implementing the one available in TraMineR and similar to the ones encoun-
tered for time series. Specifically, we have implemented the following: LCP
(Longest Common Prefix), LCSS (Longest Common Subsequence), an adap-
tation of the Euclidean distance, the x? distance, and edit distances [18J11].
We have also included DTW and drop-DTW [4] for sequences.

— Finally, trajectory-level metrics are defined as aggregations of the distances
computed on the sequences composing a trajectory (e.g., sum or minimum,
possibly weighted). In practice, comparing two trajectories requires defining
a metric for each sequence type and an aggregation function.

This general vision of dissimilarity between trajectories or sequences is highly
versatile and allows users to fine-tune it according to the specific characteristics
of each trajectory type. It is worth noting that entities does not required to
be transformed into numerical form. For instance, it is possible to define a cost-
matrix between entities attributes to evaluate the dissimilarities between entities
with symbolic attributes.

One important issue is the computational efficiency of dissimilarity calcula-
tions. To address this, TanaT implements a hidden caching system: if the dissim-
ilarity between two individuals is requested multiple times, the cached value is
reused for subsequent calls. This internal mechanism is fully transparent to the
data scientist.

Once a dissimilarity metric has been defined, it can be used within clustering
algorithms such as hierarchical clustering or k-means. It is the responsibility
of the data scientist to choose an appropriate algorithm that aligns with the
properties of the dissimilarity measure.

7 Use Case Example

In this section, we illustrate a common use case: clustering patient care trajecto-
ries. In this simple example, we work with sequences of patient admissions. Each
admission is characterized by its type and the hospital department to which the
patient was admitted. These admissions are represented as events (arrival dates
in a department).

The code below shows how to load the data from a Pandas dataframe that
contains at least three columns: one for the dates (admittime), one for the
patient identifier (subject_id), and one or more columns describing event at-
tributes. The user provides the necessary information to identify which columns
to use in the dataset. The summary function displays a few basic statistics to
verify that the data was loaded correctly. As a result, a sequence pool is directly
constructed.

10
11

12

12

13

14

15

16

Towards a Library for the Analysis of Temporal Sequences 13

from tanat.sequence import EventSequencePool, EventSequenceSettings
from tanat.dataset import access
admissions = access("mimic_admissions") # admissions is a pandas dataframe

adm_settings = EventSequencePoolSettings(
id_column="subject_id",
time_column="admittime",
entity_features=["admission_type"]

seqpool = EventSequencePool(data=admissions, settings=adm_settings)
print (segpool.summarize())

Once the data is loaded, we can define metrics to specify how two sequences
should be compared. To do so, we must define a metric both at the entity level
and at the sequence level. In the code below, we define a Hamming distance
over the admission_type attribute to compare individual temporal entities. The
sequences are then compared using a “Euclidean” distanc@ based on the entity
metric defined earlier.

from tanat.metric.entity import HammingEntityMetric,
HammingEntityMetricSettings
from tanat.metric.sequence import LinearPairwiseSequenceMetric,
LinearPairwiseSequenceMetricSettings

-- Create the entity metric (with default settings)

hamming_settings = HammingEntityMetricSettings(
default_value=0.0

)

hamming_metric = HammingEntityMetric(hamming_settings)

-- Create the sequence metric

linear_settings = LinearPairwiseSequenceMetricSettings(
entity_metric=hamming_metric, agg_fun="sum"

)

sequence_metric = LinearPairwiseSequenceMetric(linear_settings)

This metric can then be used to compare two sequences from the pool:

-- Get the sequences
seql = seqpool[18253212]
seq2 = seqpool[11540283]

-- Compute the metric between the two sequences
val = sequence_metric(seql, seq2)

10 This sequence metric sums the distances between pairs of events taken sequentially
in the two sequences. If the sequences have different lengths, the additional events
in the longer sequence are ignored (default_value=0.0).

IS T . N I VI

14 T. Guyet et A. Duvermy

Finally, this metric can be used within a clustering algorithm. Here, we per-
form agglomerative hierarchical clustering based on the admission data.

from tanat.clustering import HierarchicalClusterer,
HierarchicalClustererSettings

hc_settings = HierarchicalClustererSettings(metric=sequence_metric,
n_clusters=5)

clusterer = HierarchicalClusterer(settings=hc_settings)

clusterer.fit(seqpool)

It is worth noting that all classes are parameterized through a single settings
object. This indirect parameterization strategy, adopted in TanaT, allows for
managing the full complexity of certain parameter sets and supports representing
the processing configuration in an external file (e.g., YAML), which can then be
used to instantiate objects. This design enables a dual execution mode: either
interactively or in batch.

An extended notebook, covering additional modules of the library, is provided
as supplementary material.

8 Conclusion and Future Work

In this paper, we introduced TanaT, A first Python library dedicated to the anal-
ysis of sequential data. The library is designed to be flexible and currently in-
cludes functionality for sequence representation, visualization, metric definition,
and clustering. Initial experiments show that the approach is highly flexible,
though performance in terms of computation time still needs improvement.

Future development will focus on improving the performance of metric com-
putations and adding complementary features such as classification, sequence
manipulation, and gradual integration of additional metrics.

Acknowledgments. The authors would like to thank the APHP Foundation for fund-
ing the AIRacles Chair, within which this project was initiated and is currently being
developed.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Arnrich, B., Choi, E., Fries, J.A., McDermott, M.B., Oh, J., Pollard, T., Shah, N.,
Steinberg, E., Wornow, M., van de Water, R.: Medical event data standard (meds):
Facilitating machine learning for health. In: ICLR 2024 Workshop on Learning from
Time Series For Health. pp. 03-08 (2024)

2. Cayeéré, C., Sallaberry, C., Faucher, C., Bessagnet, M.N., Roose, P., Masson, M.,
Richard, J.: Multi-level and multiple aspect semantic trajectory model: application
to the tourism domain. ISPRS International Journal of Geo-Information 10(9), 592
(2021)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Towards a Library for the Analysis of Temporal Sequences 15

Du, F., Plaisant, C., Spring, N., Crowley, K., Shneiderman, B.: Eventaction: A vi-
sual analytics approach to explainable recommendation for event sequences. ACM
Transactions on Interactive Intelligent Systems (TiiS) 9(4), 1-31 (2019)

Dvornik, M., Hadji, I., Derpanis, K.G., Garg, A., Jepson, A.: Drop-DTW: Aligning
common signal between sequences while dropping outliers. Advances in Neural
Information Processing Systems (NIPS) 34, 13782-13793 (2021)

Gabadinho, A., Ritschard, G., Miiller, N.S., Studer, M.: Analyzing and visualizing
state sequences in R with TraMineR. Journal of Statistical Software 40(4), 10
2011

E}uyet), T., Besnard, P.: Chronicles: Formalization of a Temporal Model. Springer
International Publishing (2023)

Guyet, T., Pinson, P., Gesny, E.: Clustering of timed sequences — application to the
analysis of care pathways. Data and Knowledge Engineering 156, 102401 (2025)
Halpin, B.: SADI: Sequence analysis tools for stata. The Stata Journal 17(3),
546-572 (2017)

Hosseini, R., Chen, A., Yang, K., Patra, S., Su, Y., Al Orjany, S.E., Tang, S.,
Ahammad, P.: Greykite: deploying flexible forecasting at scale at linkedin. In:
Proceedings of the 28th Conference on Knowledge Discovery and Data Mining
(SIGKDD). pp. 3007-3017 (2022)

Le, M., Nauck, D., Gabrys, B., Martin, T.: Sequential clustering for event sequences
and its impact on next process step prediction. In: Proceedings of the Interna-
tional Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU). pp. 168-178 (2014)

Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Proceedings of the Soviet physics doklady (1966)

Levy, R.: Regard sociologique sur les parcours de vie. Regards pluriels sur
lapproche biographique: entre discipline et indiscipline 95, 1-20 (2001)

Malik, S., Shneiderman, B., Du, F., Plaisant, C., Bjarnadottir, M.: High-volume
hypothesis testing: Systematic exploration of event sequence comparisons. ACM
Transactions on Interactive Intelligent Systems (TiiS) 6(1), 1-23 (2016)
McDermott, M., Nestor, B., Argaw, P., Kohane, 1.S.: Event stream gpt: a data
pre-processing and modeling library for generative, pre-trained transformers over
continuous-time sequences of complex events. Advances in Neural Information Pro-
cessing Systems 36, 24322-24334 (2023)

Middlehurst, M., Ismail-Fawaz, A., Guillaume, A., Holder, C., Guijo-Rubio, D.,
Bulatova, G., Tsaprounis, L., Mentel, L., Walter, M., Schéfer, P., et al.: aeon: a
python toolkit for learning from time series. Journal of Machine Learning Research
25(289), 1-10 (2024)

Monroe, M., Lan, R., Lee, H., Plaisant, C., Shneiderman, B.: Temporal event
sequence simplification. IEEE transactions on visualization and computer graphics
19(12), 2227-2236 (2013)

Moreau, C., Chanson, A., Peralta, V., Devogele, T., de Runz, C.: Clustering se-
quences of multi-dimensional sets of semantic elements. In: Proceedings of the 36th
Annual ACM Symposium on Applied Computing. pp. 384-391 (2021)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology
48(3), 443-453 (1970)

Noel, D., Villanova-Oliver, M., Gensel, J., Le Quéau, P.: Design patterns for mod-
elling life trajectories in the semantic web. In: Proceedings of the International
Symposium on Web and Wireless Geographical Information Systems (W2GIS).
pp. 51-65 (2017)

16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

T. Guyet et A. Duvermy

Oubelmouh, Y., Fargon, F., De Runz, C., Soulet, A., Veillon, C.: Identifying
survival-changing sequential patterns for employee attrition analysis. In: Proceed-
ings of the 10th International Conference on Data Science and Advanced Analytics
(DSAA). pp. 1-10 (2023)

Rama, K., Canhao, H., Carvalho, A.M., Vinga, S.: AliClu - temporal sequence
alignment for clustering longitudinal clinical data. BMC Medical Informatics and
Decision Making 19(1), 289 (2019)

Santos, Y., Giuliani, R., Portela, T., Renso, C., Carvalho, J.: MAT-CA: a tool
for multiple aspect trajectory clustering analysis. In: ACM Conferences. pp. 40-43
(2023)

dos Santos Mello, R., Bogorny, V., Alvares, L.O., Santana, L.H.Z., Ferrero, C.A.,
Frozza, A.A., Schreiner, G.A., Renso, C.: MASTER: A multiple aspect view on
trajectories. Transactions in GIS 23(4), 805-822 (2019)

Saqr, M., Lopez-Pernas, S., Helske, S., Durand, M., Murphy, K., Studer, M.,
Ritschard, G.: Sequence analysis in education: principles, technique, and tutorial
with r. In: Learning analytics methods and tutorials: a practical guide using R, pp.
321-354. Springer Nature Switzerland Cham (2024)

Saveliev, E.S.; van der Schaar, M.: Temporai: Facilitating machine learning inno-
vation in time domain tasks for medicine. arXiv preprint arXiv:2301.12260 (2023)
Soubeiga, A., Guyet, T., Antoine, V.: Soft-ECM: An extension of evidential C-
means for complex data. In: Proceedings of the International Conference on Fuzzy
Systems (Fuzz-IEEE) (2025)

Tang, S., Davarmanesh, P., Song, Y., Koutra, D., Sjoding, M.W., Wiens, J.: De-
mocratizing ehr analyses with fiddle: a flexible data-driven preprocessing pipeline
for structured clinical data. Journal of the American Medical Informatics Associ-
ation 27(12), 1921-1934 (2020)

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne,
M., Yurchak, R., Rutwurm, M., Kolar, K., et al.: Tslearn, a machine learning
toolkit for time series data. The Journal of Machine Learning Research 21(1),
4686-4691 (2020)

van de Water, R., Schmidt, H.N.A., Elbers, P., Thoral, P., Arnrich, B., Rock-
enschaub, P.: Yet another icu benchmark: A flexible multi-center framework for
clinical ml. In: The Twelfth International Conference on Learning Representations
(2024)

Wornow, M., Xu, Y., Thapa, R., Patel, B., Steinberg, E., Fleming, S., Pfeffer,
M.A., Fries, J., Shah, N.H.: The shaky foundations of large language models and
foundation models for electronic health records. npj Digital Med. 6(135), 1-10
(2023)

Xu, J., Gallifant, J., Johnson, A.E., McDermott, M.: Aces: Automatic cohort ex-
traction system for event-stream datasets. arXiv preprint arXiv:2406.19653 (2024)
Yeshchenko, A., Mendling, J.: A survey of approaches for event sequence analysis
and visualization. Information Systems 120, 102283 (2024)

	Towards a Library for the Analysis of Temporal Sequences

