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Abstract. To detect anomalies with precision and without prior knowl-
edge in time series, is it better to build a detector from the initial tempo-
ral representation or to compute a new, tabular representation using an
existing automatic variable construction library? This article addresses
this question by conducting an in-depth experimental study for two pop-
ular detectors: Isolation Forest and Local Outlier Factor. The results,
obtained from experiments on five different datasets, show that the new
representation, computed using the tsfresh library, allows Isolation Forest
to improve its performance significantly.
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1 Introduction

The literature of time series deals with various learning tasks such as forecasting,
clustering and classification. In this article, we address the problem of time series
anomaly detection (TSAD) [3,5,6, 20,33], specifically for univariate time series.
We denote τi = ⟨(t1, x1), . . . , (tm, xm)⟩ a univariate time series, where xk is the
value of the series at time tk. In this article, the objective is to predict whether
the pair (ti, xi) corresponds to an anomaly (point-wise detection).

Over the past few years, a consensus has emerged within the community that
transforming time series from the temporal domain to an alternative represen-
tation space is one of the most effective ways of improving model accuracy. This
has been observed in classification [1, 28, 32], early classification [4] and, to a
lesser extent, in anomaly detection in a few very specific publications focused on
particular use cases [36,40].

This recent research work has motivated the study we present in this paper.
We build on the idea of changing the representation space and then apply-
ing “usual” anomaly detectors designed for tabular data [32]. The question we
address here is: can we achieve better anomaly detection performance in the
computed feature space, or is it better to stay in the original temporal represen-
tation?
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The rest of this article is organized as follows: Section 2 presents the back-
ground and key concepts used in this article, so that it can be properly positioned
in the very large literature of anomaly detection for time series. Section 3 presents
the proposed processing pipeline. Section 4 presents the experimental protocol.
Detailed results are then presented in section 5 before concluding in the final
section.

2 Context and Concepts Used

To allow the reader to correctly position the work carried out in this article, we
outline below the main themes present in the literature of anomaly detection for
time series [5, 6] and explain our positioning. As the topic of anomaly detection
in time series is very widely covered in the literature, we do not claim to be
exhaustive but rather aim to be factual for the purposes of this study.

2.1 Types of Anomalies

The literature distinguishes at least three main types of anomalies [10]:

– (i) point anomalies : for example, an unusually high financial transaction
in relation to a customer’s transaction history.

– (ii) collective anomalies (in the sense of a succession of correlated punc-
tual anomalies): for example, a sudden drop in traffic on a website, due for
example to a server failure or a denial-of-service attack.

– (iii) contextual anomalies: for example, an abnormal increase in electric-
ity consumption in a given region, due for example to a snowstorm or an
exceptional heat wave.

Given the objective of our study, we are placing ourselves in the most general
case possible. We make the effort of being as “agnostic” as possible through the
following assumptions. (i) We have no feedback loop from an expert user to
contextualize the observed data (ii), to adjust the parameters of the methods
(iii), or to adjust the sliding window size (see below). (iv) We also do not try to
distinguish punctual anomalies from collective ones.

2.2 Online or Offline Analysis

For anomaly detection in time series, it is important to distinguish between online
detection and offline analysis. Online detection refers to the real-time detection
of anomalies as they occur. It is often used in real-time monitoring systems where
quick response is essential to prevent undesirable events. Offline analysis, on the
other hand, focuses on the retrospective examination of data to identify anoma-
lies after the fact. It is generally used for post-hoc analysis, understanding the
root causes of anomalies and improving online detection systems. In this article,
we address offline analysis, considering that we are in an exploratory analysis
scenario (the detection models are not deployed subsequently). Therefore, in the
experimental section, all data will be used for training, and the results will also
be presented in a training context.
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2.3 Cross-knowledge

When it comes to analyzing multiple time series, pooling knowledge allows the
extraction of richer information compared to treating each time series individu-
ally. By combining different series, it is possible to detect trends, correlations, or
patterns that would not be visible when analyzing each time series separately.
This approach provides a deeper understanding of the interactions and dynamics
between different time series. By exploiting this cross-referenced information, it
becomes possible to improve forecast accuracy and identify anomalies or unusual
events. However, as mentioned in [39]: “each time series must be considered as
totally independent of the others, unless we know the interactions or clearly
the application domain in which the time series are generated”. In this article,
however, we are as agnostic as possible. As a result, we will be studying time
series one by one, without combining information. Each time series thus becomes
a “dataset” in its own right, on which a detection method can be applied and
performance results collected.

2.4 Typology of Approaches

The literature considers three main families of anomaly detection approaches [6]:

– (i) supervised, where each time series, or a portion of it, is labeled as either
normal or anomalous.

– (ii) semi-supervised, where it is assumed that the beginning of the time
series contains no anomalies; in this case, the model is trained on the normal
data only and then deployed on the rest of the time series for anomaly
detection.

– (iii) unsupervised, where no assumption is made: anomalies can occur at
any point in the time series and and no labels (normal/anomalous) are avail-
able during training.

In this article, consistent with the idea of being agnostic and performing cold
analysis, we place ourselves in the third case.

2.5 Detection Methods: Time-Series vs. Tabular

There are numerous anomaly detection methods for univariate time series [7,18]
and just as many for tabular data [11]. It is interesting to note that these two
fields share certain methods, ranging from the simplest (statistical methods, for
example) to the most elaborate. Indeed, methods designed for tabular data often
perform very well on temporal data. Examples of these include Isolation Forest
(IF) [26] and Local Outlier Factor (LOF) [9]. In the oral presentation made by
Boniol in [6], the interested reader will find a comparison of a fairly large number
of methods (in particular slides 125 to 130), showing the very good positioning
of IF and LOF on temporal data. Given the objective of the study presented
in this article, and the fact that both methods work well in both the temporal
and tabular domains, both will be the methods we use in the remainder of our
comparative study.
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2.6 Time Series Windowing

The final concept we need to introduce is “sliding windows” (and the associated
parameters), which allows methods initially dedicated to tabular data to be used
on temporal data. For a given time series (in which we wish to detect anomalies),
the method consists in “slicing” it into a succession of F windows (of size W ).
These windows are then organized into a table of W columns and F rows, thus
turning the time series into a table. The objective is then to identify which rows
of this table contain anomalies.

The window passed over the time series can be either “jumping” (also known
as non-overlapping), or “sliding” (overlapping). In the sliding case, an additional
parameter is introduced: the shift step α which determines the degree of overlap
between consecutive windows (jumping windows can be thought of as sliding
windows with α = W , i.e. no overlap). A fairly careful review of the literature
[8,16,17,23,25,34,35] shows that most methods, unless they incorporate feedback
from an expert, use a sliding window and α = 1. This will also be our case in
the remainder of this article.

The remaining challenge is to determine the window size (W ). This point is
quite crucial, yet surprisingly under-explored in the literature. Most studies set
the value of W through preliminary cross-validation experiments. To our knowl-
edge, only one paper has reasonably addressed the question of automatically de-
termining W in the case of “periodic” time series [13], in which the authors test
several methods for detecting “seasonality/periodicity”, within a semi-supervised
framework. In our case, we will not make the assumption that the time series
studied are periodic. The experimental section of this article will therefore test
several values of W with increasing orders of magnitude.

2.7 Feature Extraction from Time Series

The approach involves transforming data from the temporal world to the tabular
world using libraries that automatically extract features from time series. The
features are diverse, allowing to capture different properties of the time series,
such as seasonality, trends or auto-correlation, and can therefore be adapted to
different application domains. This transformation thus captures the essence of
time series data, while making it compatible with more traditional tabular data
analysis techniques.

Stimulated by the development of the library HCTSA [15], several unsuper-
vised feature engineering tools have been developed independently in different
programming languages: for example, CATCH22 [27], FEATURETOOLS [22],
TSFRESH [12], TSFEL [2], TSFEATURES [21], or FEASTS [29]. An exten-
sive study presented in [32] (for the classification task) but also those presented
in [36, 40] (for the anomaly detection task) show that TSFRESH [12] is among
the best performers. It is therefore our selected feature extraction tool. The pro-
posed approach could nonetheless use other tools, or even combine them (for
example using a stacking method).
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Fig. 1. Proposed processing pipeline.

TSFRESH 3 (Time Series FeatuRe Extraction on basis of Scalable Hypothesis
tests) is a Python library that calculates up to 800 features (basic statistics, au-
tocorrelations, entropy, Fourier coefficients, etc.) from a time series by combining
63 time series characterization methods [12]. It offers three pre-defined feature
dictionaries ranging in size from 10 to almost 800 features. The library also en-
ables feature selection based on statistical tests. This process can be parallelized,
to reduce computation times. In this paper, we used the maximum number of
features, as feature selection is only possible in a supervised framework.

3 Proposed Processing Pipeline

Based on all the concepts presented previously in this paper, the processing
pipeline proposed for our comparative study is presented in figure 1. It consists
of seven steps and is applied to each time series:

– Step 1: divide the series into windows (W = 6 for illustration purposes in
figure 1);

– Step 2: put the obtained F windows, of size W , (W1 to WF ) in a tabular
data base;

– Step 3: preprocess data;
– Step 4: feature extraction using the TSFRESH library;
– Step 5: put the F obtained windows (W1 to WF ), described by the q features

calculated using TSFRESH, in a tabular data base;
– Step 6: apply an anomaly detector (IF or LOF);
– Step 7: obtain the anomaly prediction for each window.

The experimental study described in the following section will compare the
results obtained with and without steps 4 and 5, to answer the research question
raised in the introduction of this paper.
3 https://tsfresh.readthedocs.io/en/latest/index.html

https://tsfresh.readthedocs.io/en/latest/index.html
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Table 1. Summary of information on the datasets used.

Name #series Length Freq (Hz) % anomalies Domains
Min Max Min Max

SVDB 76 230400 230400 0.008 0.34 45.54 ECG
NAB 46 1127 22695 variable 8.30 10.29 servers, tweets, traffic, advertising

AIOPS 13 16441 295414 [0.003-1.7] 0.06 7.50 performance indicators
NormA 5 2000 35040 unknown 3.08 9.13 aerospace, health, body language, electricity
UCR 247 6674 300262 diverse 0.0005 4.9 medical, meteorology, biology, industry

4 Experimental Protocol

This section describes the choices made during the experiments: user-defined
parameters, sliding window size (W ), etc. All experiments carried out can be
reproduced using the code in [19]. Some preliminary tests, which will be briefly
discussed below, are not fully presented in this article but interested readers can
nevertheless find them in the “Additional material” file available in the GitHub
mentioned above [19].

4.1 Datasets

Anomaly detection is currently the subject of a great deal of research, and nu-
merous benchmark datasets have been established to enable comparing the per-
formance of new algorithms to the state of the art. Among these, we have selected
a number of datasets described below. In some cases, we did not retain all time
series from these datasets. The reasons for excluding certain time series are given,
and the exact list of time series (identifiers) used for each dataset is available
in [19].

SVDB (MIT-BIH Supraventricular Arrhythmia Database) (available at [37]):
this dataset initially contains 78 time series. However, two series have been dis-
carded due to an extremely high contamination rate (CT) (>50%) which unre-
alistic.

NAB (Numenta Anomaly Benchmark) (available at [37]): created by Nu-
menta in 2015, it is currently the second most widely used benchmark in the
literature [39]. It consists of 58 time series divided into seven groups, two of
which contain synthetic data only. We chose not to use these synthetic data,
which correspond to 11 time series. The remaining five groups cover a variety of
topics 4). From these five groups, we removed one time series that contains no
anomalies. In total, we used 46 time series from this dataset.

AIOPS 20185: this dataset was created in 2018 for the AIOps challenge.
29 time series were collected from various companies such as Sogou, Tencent or
eBay. They correspond to performance indicators that reflect the scale, quality
of web services and health of a machine as explained in [31]. The data we used
comes from the benchmark dataset [30]. Additionally, it is worth noting that

4 more information at: https://github.com/numenta/NAB/tree/master/data
5 Available at: https://github.com/TheDatumOrg/TSB-UAD

https://github.com/numenta/NAB/tree/master/data
https://github.com/TheDatumOrg/TSB-UAD
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we have combined the training and testing parts for each time series. After
analyzing the correlations among the 29 time series, we noticed that some of
them are correlated, which could potentially introduce bias in the statistical
tests conducted during the analysis of the results. Therefore, we only keep the
uncorrelated series (r < 0.3), ultimately leading us to select 13 series for this
dataset.

NormA (available at [37]): this dataset consists of 21 time series, of which
14 are synthetic and have been discarded. The seven real series can be grouped
into four categories. Among the real-world time series, the first three are highly
correlated, and we will thus only keep one of the three. In total, we thus keep
five time series only for this dataset.

UCR Anomaly Archive6 : The UCR Anomaly Archive dataset was re-
leased in 2020 as an alternative to several benchmarks deemed to be deficient
by [39]. For this dataset, we chose to only exclude three series that are signifi-
cantly longer than the others (due to computational time constraints). We thus
used a total of 247 time series from this dataset.

To sum up, our five datasets7 together represent a wide diversity of problems,
anomaly rates and issues (see Table 1). When presenting the results, the AIOPS
and NormA datasets, which contain a small number of time series, will be merged
in order to perform statistical tests, such as the Wilcoxon test [38], which requires
a minimum number of values to be used.

4.2 Size of Sliding Windows

As mentioned above, this point is quite crucial but surprisingly little discussed
in the literature. To the best of our knowledge, only one paper has reasonably
addressed the question of automatically adjusting the value of W in the case
of “periodic” time series [13]. In our case, where we aim to remain agnostic and
without feedback loops, we decided to simply test four window sizes correspond-
ing to values observed in the literature. We started with a small size W = 32 and
then doubled its size, hoping to increase the amount of information captured,
several times. In the end, the tested values for W are 32, 64, 128, and 256. The
aim of the experiments will not be to determine the optimal window size but to
confirm that the conclusions do not depend on a very specific window size.

4.3 Hyperparameter Tuning

The TSFRESH library [12] (acronym for Time Series FeatuRe Extraction on
basis of Scalable Hypothesis tests) can be used to create varying numbers of

6 Available at: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
7 Norma and NAB have sometimes described having mislabeled ground truth, trivial

or overestimated success by having repeated anomalies. But in our case, as mentioned
above, by removing synthetic data, correlated time series, and manual inspection we
have done our best to avoid these aspects for these two datasets (see [19] to have
the exact identifiers of the retained time series).

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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features (the value of q mentioned in section 3). All the tests we conducted
showed better results by pushing the feature extraction process to its limits,
thus using a large number of features calculated by the library (i.e. its ‘Efficient’
version and q = 777 features). We point out that sometimes, for example with
W = 32, it is not possible for TSFRESH to calculate all the requested features.
In such cases, we removed the impacted columns (with missing values) from the
table produced in step 5 of the pipeline described in section 3.

Two anomaly detectors for tabular data that have shown their worth on time
series are used: Isolation Forest (IF) and Local Outlier Factor (LOF). In all
the experiments carried out below, we used the implementation provided in the
PyOD8 library (version 1.1.3) with their default settings.

4.4 Results Evaluation Criterion

The literature offers numerous evaluation metrics, such as accuracy, F1 score,
the “PA%K” criterion [24], the AUC (Area Under the receiver operating charac-
teristics Curve) [14]. In our case, we decided not to use a criterion that requires
a threshold value, as we place ourselves in an agnostic framework where there is
no feedback loop with a domain expert. Indeed, this threshold can be a difficult
parameter to select and/or may require starting from a heuristic on the distribu-
tion of anomaly scores. For this reason, we selected the AUC as our evaluation
criterion.

The reader will note that in this case, but also for other potential crite-
ria, ground truth labels are necessary to allow the evaluation of the predictions
obtained in step 7 of our processing pipeline. For the predicted class, this infor-
mation is given by the detection method used, here IF or LOF. For the class
to be predicted (ground truth), we operate as follows (which corresponds to the
observed usage): during the segmentation of the time series into windows (step
1), if an anomaly exists in the window, then the entire window is labeled as
anomalous, and vice versa in the opposite case. Thus, it is possible to compare
for each window the class predicted by a confidence score delivered by IF or
LOF with the ground truth. The set of comparisons allows us to calculate the
AUC for each time series (individually) from the datasets used. The collection
of these AUCs will also enable us to conduct statistical tests and present results
in terms of ranking or critical diagrams.

4.5 Preprocessing

Preliminary tests were carried out in order to analyze the benefits from “horizon-
tally normalizing” the values contained in the sliding windows before applying
the two approaches: 1) anomaly detection using the initial representation (called
“TS” in Table 2) and 2) anomaly detection using the new feature representation
calculated by TSFRESH (called “FE” in Table 2). To this end, a comparative
study was carried out between “doing nothing” (No Normalization) and 3 usual
8 https://pyod.readthedocs.io/en/latest/

https://pyod.readthedocs.io/en/latest/
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Table 2. Comparison of the mean ranks of normalization approaches by window size
(combining IF and LOF results).

Without
Normalization MinMax Median-IQR MeanStd

SVDB

32 TS 2.250 2.036 3.063 2.651
FE 1.474 2.250 3.135 3.141

64 TS 2.211 2.227 2.908 2.655
FE 1.750 2.260 2.934 3.056

128 TS 2.174 2.243 2.609 2.974
FE 2.049 2.418 2.474 3.059

256 TS 2.079 2.638 2.424 2.859
FE 2.260 2.563 2.230 2.947

AIOPS
+
NormA

32 TS 1.806 2.583 2.472 3.139
FE 2.236 2.708 2.750 2.306

64 TS 1.903 2.431 2.722 2.944
FE 2.458 2.722 2.625 2.194

128 TS 1.722 2.583 2.667 3.028
FE 2.500 2.722 2.417 2.361

256 TS 1.736 2.944 2.319 3.000
FE 2.250 2.944 2.250 2.556

normalization methods, namely (i) Min-Max, (ii) Median-IQR and (iii) Mean-
Standard Deviation.

This study is conducted based on (i) three of the datasets described above:
SVDB, NormA and AIOPS among the five selected and (ii) the TSFRESH li-
brary parameter set to ‘minimal’ (q = 10). Since the NormA dataset only consists
of five time series, its results are combined with those of AIOPS, as mentioned
earlier.

The results presented in Table 2 show the mean rank of these four nor-
malization techniques (1 being the best, 4 the worst), aggregated regardless of
the detection method (IF or LOF) and versus the window size. We see that
normalization approaches do not improve performance. The absence of normal-
ization exhibits the best mean rank in most experiments, and thus yields the
best results. Consequently, in the next section, only the results obtained with
no normalization are presented. A more in-depth analysis of this study found in
the supplementary material [19], according to the “detection method” axis (IF
or LOF), further confirms this result.

5 Results

5.1 Performance Gains from the Extracted Features for Each
Detector

Table 3 reports the obtained results: with (FE) or without (TS) the use of
TSFRESH in the proposed processing pipeline; with the Isolation Forest (IF) or
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Table 3. Comparison of detectors, by dataset, according to the window size used.

Isolation Forest Local Outlier Factor
TS FE p-value TS FE p-value

SVDB

32 1.882 1.118 1.522×10-12 1.329 1.671 2.066×10-3

64 1.855 1.145 5.375×10-9 1.480 1.520 4.454×10-1

128 1.842 1.158 5.553×10-10 1.750 1.250 2.490×10-6

256 1.592 1.408 1.161×10−1 1.684 1.316 5.541×10-6

AIOPS + NormA

32 1.889 1.111 1.930×10-3 1.556 1.444 8.317×10-1

64 1.778 1.222 1.930×10-3 1.556 1.444 7.660×10-1

128 1.778 1.222 1.930×10-3 1.417 1.583 4.925×10-1

256 1.833 1.167 4.745×10-3 1.389 1.611 1.674×10-1

NAB

32 1.652 1.348 5.059×10−2 1.261 1.739 8.504×10-4

64 1.630 1.370 1.727×10-2 1.261 1.739 7.430×10-5

128 1.674 1.326 5.525×10-3 1.217 1.783 1.261×10-4

256 1.641 1.359 1.723×10-2 1.283 1.717 3.163×10-3

UCR

32 1.826 1.174 2.581×10-29 1.156 1.844 5.159×10-22

64 1.844 1.156 9.264×10-32 1.170 1.830 7.227×10-26

128 1.848 1.152 1.792×10-32 1.223 1.777 2.247×10-20

256 1.796 1.204 8.983×10-27 1.243 1.757 1.055×10-19

Local Outlier Factor (LOF) detectors. These results are detailed by dataset and
window size. The presented values correspond to the mean ranks obtained over all
time series of each dataset. The p-values are derived from the Wilcoxon test [38]:
a bold value indicates a statistically significant difference in performance between
the pair of detectors.

The results are clear: (i) for Isolation Forest, across 16 results (4 datasets x
4 window sizes), the proposed FE method (using TSFRESH) always obtains the
best mean rank with 14/16 cases where the difference is statistically significant
(ii) for Local Outlier Detection, the proposed FE method obtains the best mean
rank 4 times, of which only 2 are significantly better. The proposed processing
chain benefits IF, which is tree-based (thus relying on value ranks), but does not
benefits LOF, which is density-based (thus relying on distance calculations).

It is likely that for LOF, the size of the vector produced by TSFRESH leads to
a dimensional problem in the distance calculations used by this method, whereas
IF does not suffer from this problem. The performance of LOF nevertheless raises
questions. This is a model that requires more attention than Isolation Forest
(based on rank statistics), which needed neither normalization nor optimization
of its hyperparameters. It is also conceivable that adjusting the value of k in
LOF could provide an improvement, but in the case without a feedback loop
with a domain expert, we have not explored this possibility. These points will be
explored in a future work. A normalization of the extracted features (vertically)
was also evaluated (as an additional step between the step 5 and 6 in Figure 1)
the results indicate that: 1) for UCR and (AIOPS + NormA) datasets, LOF-FE
nearly always improved its performance but it was not enough to surpass LOF-
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TS, 2) for the NAB dataset, LOF-FE consistently improved its performance and
surpassed LOF-TS and 3) for SVDB, a decline in the performance of LOF-FE
was observed. Our conclusion remains therefore unchanged.

5.2 Comparison of detectors

Fig. 2. Critical diagrams for each dataset, averaged over the four window sizes.

Figure 2 shows the critical diagram (CD) of methods (i) per dataset, then (ii)
with or without the use of calculated features and (iii) averaged over all window
sizes. In each sub-figure and for each bar of the critical diagram, we find in this
order: the mean rank of the method, the method name (IF or LOF) prefixed with
TS or FE (respectively for initial Time Series or FE for Feature Engineering via
TSFRESH), then the corresponding mean AUC value with finally the standard
deviation of the AUC in brackets. Interested readers will find further results with
other axes of analysis in the supplementary material [19].

Once again, we note that, in general, Isolation Forest benefits most from
the features calculated using TSFRESH, ranking first on 3 of the 4 datasets.
For LOF, the results are much more contrasted: the creation of features brings
little or no improvement compared to the initial temporal representation. These
results confirm those presented in Table 3. Finally, LOF applied to temporal data
achieves the best results on the UCR dataset. This dataset has the particularity
of containing very few anomalies (see Section 4.1), with anomalies appearing
only in the second part of each time series. This has a remarkable impact on IF
which dramatically improves its performance using features of TSFRESH: AUC
moves from 0.586 to 0.746, i.e. +36%.

6 Conclusion

In the context of anomaly detection within a time series, this paper proposed
a processing pipeline which first transforms time series from the temporal do-
main to an alternative tabular representation space, and then apply anomaly
detectors dedicated to tabular data. Our motivation is to consider the feature



12 M. Hamon et al.

extraction process as a source of knowledge and information useful for detection.
The central question was whether better results could be obtained in the com-
puted feature space compared to the initial temporal representation? Through
extensive experiments across five datasets and with two detectors (IF and LOF),
we observed that the results significantly improved for IF, but not for LOF. Fu-
ture work will focus on (i) extending the number of detectors in the comparison,
(ii) testing other feature extraction libraries (or combining them), and (iii) con-
sidering tuning the window size and/or considering not a sliding window but
a “jumping” window (with no overlapping between consecutive windows), even
though this is not inherent to the proposed processing chain.
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