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Abstract. Time series classification is widely used in many fields, but
it often suffers from a lack of labeled data. To address this, researchers
commonly apply data augmentation techniques that generate synthetic
samples through transformations such as jittering, warping, or resam-
pling. However, with an increasing number of available augmentation
methods, it becomes difficult to choose the most suitable one for a given
task. In many cases, this choice is based on intuition or visual inspection.
Assessing the impact of this choice on classification accuracy requires
training models, which is time-consuming and depends on the dataset.
In this work, we adopt a generative model perspective and evaluate aug-
mentation methods prior to training any classifier, using metrics that
quantify both fidelity and diversity of the generated samples. We bench-
mark 22 augmentation techniques on 131 public datasets using eight
metrics. Our results provide a practical and efficient way to compare
augmentation methods without relying solely on classifier performance.
The source code is publicly available:
https://github.com/MSD-IRIMAS/Data-Augmentation-4-TSC

Keywords: Time Series Classification · Data Augmentation · Genera-
tive Models

1 Introduction

Time series data are ubiquitous, appearing in a wide range of applications in-
cluding health monitoring, traffic forecasting, finance, and more. Time Series
Classification (TSC) [27, 3] is the task of assigning a class label to an input time
series and is central to many domains such as medicine, climate science, and
astronomy. This task typically involves training a machine learning model to
learn temporal patterns that distinguish one class from another. Deep learning
models have been particularly successful in TSC [22, 19, 13, 2, 20, 5] due to their
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capacity to learn complex representations and efficiently scale via GPU accelera-
tion. However, one of their major drawbacks is overfitting, often exacerbated by
the scarcity of labeled time series data. Collecting labeled data for time series is
challenging and costly, prompting researchers to explore data augmentation as
a strategy to improve model generalization.

Data augmentation [8, 33] involves generating synthetic samples by applying
transformations to existing labeled data, with the goal of enriching the training
set and improving downstream performance. A wide range of augmentation tech-
niques has been proposed for time series, some adapted from computer vision
(e.g., jigsaw, rotation), and others specifically designed to preserve the temporal
structure of the data [6, 31]. Most prior work in this area focuses on identifying
the “best” augmentation method through empirical comparisons of model per-
formance. Typically, this involves training models with and without augmented
data and measuring the difference in classification accuracy. While informative,
this approach is computationally expensive and offers no principled way to choose
between many candidate methods ahead of time.

In this work, we propose re-framing time series augmentation methods as
generative models. To the best of our knowledge, this is the first work to sys-
tematically evaluate time series augmentations from this perspective. Rather
than relying solely on downstream performance, we assess augmentation meth-
ods using a generative evaluation framework based on relevant metrics. Gener-
ative models are algorithms that learn from real data to produce new samples
that resemble the original distribution. Such models can be evaluated on two
key aspects: fidelity and diversity. Fidelity measures how closely the generated
data resembles real samples, while diversity ensures the model captures the full
variability of the data. Both are essential for assessing the quality of synthetic
data. We adopt the evaluation setup of Ismail-Fawaz et al. [17], leveraging eight
metrics that quantify the quality of generated data in a pre-trained feature space.
This analysis, independent of performance gain evaluation, provides a practical
and computationally efficient way to select promising augmentation methods
prior to classifier training.

Our analysis, conducted across 22 augmentation techniques evaluated on
131 time series classification datasets [4, 27], shows that Discriminative Guided
Warping (DGW) [23], when combined with the Move-Split-Merge (MSM) sim-
ilarity measure [32, 10], consistently outperforms all other methods in terms of
average fidelity. In contrast, the Amplitude Scaling (AS) method ranks first in
terms of average diversity.

This evaluation framework lays the foundation for future work, where we
aim to investigate whether a causal relationship exists between the generative
evaluation metrics and downstream performance gains. Such an extension would
help determine whether better scores on fidelity and diversity metrics can predict
improved model performance when trained on augmented data.

The rest of this paper is organized as follows: Section 2 presents the augmen-
tation techniques evaluated in this study; Section 3 reports the experimental
results across all evaluation metrics; and Section 4 concludes the paper.
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2 Methodology

In this section, we first present some useful definitions to facilitate the reading of
the rest of this work. Second, we present the seven data augmentation techniques
for time series data included in this study.

2.1 Definitions

– A Univariate Time Series (UTS) is defined as x = {x1, x2, . . . , xL}, a
sequence of L real-valued observations sampled at regular time intervals.

– A time series classification dataset is a set D = {(x(i), y(i))}Ni=1, where
each x(i) is a UTS and y(i) ∈ {1, . . . , C} is its corresponding class label, with
C the number of distinct classes.

– A time series augmentation function is a mapping F : RL → RL that
transforms an input series x into an augmented series x̂ = F(x), with the
aim of increasing diversity, while preserving the original class distribution.

2.2 Time Series Data Augmentation Techniques

In what follows, we detail each of the data augmentation techniques that we use
in our study. A detailed visualization of these techniques is presented in Figure 1.

2.2.1 Jittering

Jittering [33] is a data augmentation method for time series that adds random
Gaussian noise to the signal. For each time step t, the augmented value is:

x̂t = xt + ϵt, ϵt ∼ N (0, σ2), (1)

where ϵt is Gaussian noise. The standard deviation σ is sampled from a uniform
distribution, σ ∼ U(0, 0.1).

2.2.2 Amplitude Scaling

Amplitude Scaling (AS) [33] modifies a time series by multiplying all values
by a random scalar. For each time step t, the augmented value is:

x̂t = xt · α, (2)

where the scaling factor α is drawn from a Gaussian distribution, α ∼ N (1.0, 0.12).

2.2.3 Amplitude Warping

Amplitude Warping (AW) [33] modifies a time series by applying a smooth,
non-linear scaling function over time, unlike the static scaling in AS (see Sec-
tion 2.2.2). A random cubic curve is generated and used to vary the amplitude
across time steps. For each time step t:

x̂t = xt · f(t), (3)
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Fig. 1. Visual summary of all data augmentation methods applied to the same input
time series (in blue), taken from the ECG200 dataset of the UCR archive [4]. Each
subplot shows the transformation produced by a specific augmentation technique with
its resulting augmented series (in red).
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where f(t) = a · t3 + b · t2 + c · t + d is a smooth cubic function whose shape is
randomly determined. The function is normalized to remain positive and avoid
extreme scaling. This ensures that the overall structure of the signal is preserved.
The coefficients of f(t) are sampled uniformly following:

a ∼ U(−0.2, 0.2) & b, c, d ∼ U(−a, a). (4)

2.2.4 Window Warping

Window Warping (WW) [25] modifies the time axis of a time series by stretch-
ing or compressing a randomly selected window. For each series, a window of size
w starting at time step s is randomly selected, and a warp scale α is uniformly
sampled from U(0.5, 2.0).

Given a time series x of length L, the selected window xwin = xs:s+w−1 =
{xs, xs+1, . . . , xs+w−1} is warped as follows:

x̂win = interp(xwin, α · w), (5)

where interp(·, ℓ) denotes resampling the input to length ℓ via linear interpola-
tion.
The final augmented series is obtained by resampling the concatenation of the
non-warped and warped segments back to length L:

x̂ = interp(concat(x1:s−1, x̂win, xs+w:L), L). (6)

2.2.5 Random Guided Warping

Random Guided Warping (RGW) [23], unlike Window Warping (Section 2.2.4),
warps the entire time series based on alignment with another sample. The guid-
ing sample is chosen at random from the dataset, and an alignment path is
computed between the two series using an elastic similarity measure. This path
is then used to re-index the original series and warp it accordingly.

Let x be the input series of length L, and x′ a randomly selected reference
series. Using a distance metric such as Dynamic Time Warping (DTW) [28],
ShapeDTW [35], or Move-Split-Merge (MSM) [32], an alignment path P =
{(ik, jk)}LP

k=1 of length LP is computed between x and x′. The time steps ik
in x are then used to generate transformation indices: t̂ = {ik}LP

k=1. These in-
dices determine how to reorder and interpolate the original series. The warped
series is obtained by resampling the aligned points to the original length:

x̂ = interp({xt̂k
}LP
k=1, L). (7)

2.2.6 Discriminative Guided Warping

Discriminative Guided Warping (DGW) [23] augments a time series by align-
ing it to a specially selected guiding series that is discriminative with respect to
class boundaries. Unlike RGW (Section 2.2.5), where the guiding sample is cho-
sen at random, DGW selects a reference series x∗ that maximizes the contrast
between positive and negative class distances.
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For each input series x of length L, we sample a set of positive prototypes
Spos (from the same class) and negative prototypes Sneg (from different classes).
For each spos ∈ Spos, we compute its mean distance from the other positives and
negatives:

dpos(spos) =
1

|Spos| − 1

∑
p∈Spos

p̸=spos

D(spos,p), dneg(spos) =
1

|Sneg|
∑

n∈Sneg

D(spos,n).

(8)
where D(·, ·) is an elastic similarity measure such as DTW [28], MSM [32], or
ShapeDTW [35]. The reference series is selected as:

x∗ = arg max
spos∈Spos

[dneg(spos)− dpos(spos)]. (9)

Once the discriminative guiding series x∗ is selected, the rest of the transfor-
mation proceeds identically to RGW (Section 2.2.5). That is, we compute the
alignment path P = {(ik, jk)}LP

k=1 between x and x∗ to generate transformation
indices: t̂ = {ik}LP

k=1. The warped series is obtained by resampling the aligned
points to the original length:

x̂ = interp({xt̂k
}LP
k=1, L). (10)

2.2.7 Weighted Barycenter Averaging
Weighted Barycenter Averaging (WBA) [7, 15, 16] augments a time series by

synthesizing a prototype from neighbors of the same class using Elastic Barycen-
ter Averaging (EBA) [30, 21, 9] with weighted contributions. For each input series
x, a set of neighbors from the same class {x(i)}ni=1 is selected, and elastic similar-
ity measures D(x,x(i)) are used to assign similarity-based weights wi as follows:

wi = exp

(
ln(0.5) · D(x(i),x)

D∗

)
, (11)

where D(·, ·) is the elastic similarity measure (DTW, ShapeDTW, or MSM),
and D∗ = mini D(x(i),x) is the distance between the input series and its closest
neighbor.

The prototype z∗ is computed by minimizing a weighted elastic similarity
measure objective:

z∗ = argmin
z

n∑
i=1

wi ·D(z,x(i)). (12)

Unlike arithmetic averaging, this objective aligns each neighbor x(i) to a
common reference series z∗ via time warping. At each time step t in z, a weighted
average is computed over all time points in x(i) that are aligned (via the warping
path generated by D(z∗,x(i))) to t.

Formally, let A(i)
t denote the set of indices in x(i) aligned to time step t in

z∗. Then the barycenter is updated iteratively by:

z∗t =

∑n
i=1

∑
t′∈A(i)

t
wi · x(i)

t′∑n
i=1 wi · |A(i)

t |
. (13)
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This ensures that the prototype captures the shape variability between aligned
neighbors, while being biased towards the input series x through initialization.
After convergence, the final prototype is used as the augmented series x̂ = z∗last.

In the case where D(·, ·) is set to DTW [28], the method is called DBA [30];
when set to ShapeDTW [35], it is referred to as ShapeDBA [21]; and when set
to MSM [32], it is referred to as MBA [9].

3 Experimental Evaluation

3.1 Evaluation Metrics

Evaluating generative models has been extensively studied across data modali-
ties [29], including temporal data [14]. Recently, Ismail-Fawaz et al. [17] proposed
a unified framework that collects and extends evaluation metrics, including one
designed specifically for temporal data. Our study follows this framework and
adopts eight metrics in total to assess the quality of generated samples.

These metrics are divided into two categories: three measure fidelity, and five
assess diversity. For detailed formulations and parameter settings, we refer the
reader to [17].

3.1.1 Fidelity Metrics
Fidelity measures how similar the generated samples are to real ones. The

three metrics used are Fréchet Inception Distance (FID), Accuracy on Gener-
ated (AOG), and Density. FID compares the distributions of real and generated
samples in latent space. AOG evaluates whether generated samples preserve the
class label of their original counterparts. Density measures how well generated
samples populate real-sample neighborhoods in latent space.

3.1.2 Diversity Metrics
Diversity reflects how much generated samples differ from each other. The

five diversity metrics are Average Pair Distance (APD), Average per Class Pair
Distance (ACPD), Coverage, Mean Maximum Similarity (MMS), and Warping
Path Diversity (WPD). APD calculates the average distance between random
pairs in latent space. ACPD computes the same measure within class, averaged
across all classes. Coverage counts how many real-sample neighborhoods are pop-
ulated by generated samples. MMS measures how distinct generated samples are
from real ones by computing the mean of their maximum similarities. WPD uses
Dynamic Time Warping (DTW) [28] to assess structural diversity, by measuring
how far each warping path deviates from the diagonal of the DTW matrix.

All metrics, except WPD, are computed in the latent space of a feature
extractor pre-trained on the real training data. WPD is computed directly on
raw time series.

3.1.3 Metrics Interpretation
For each metric, we compute two versions: one on the generated data and

one on the real training data. Following [17], we report the absolute difference
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between the two. A lower difference indicates that the augmentation method
better preserves the characteristics of the original data. Due to space constraints,
we limit the analysis to this difference-based comparison, and refer to [17] for
deeper discussions on metric interpretation.

3.2 Experimental Setup

We evaluate all methods on 131 univariate time series classification datasets, pri-
marily sourced from the UCR archive [4] (121 datasets), with additional datasets
from the recent update by Middlehurst et al. [27] (10 datasets). A dataset was
excluded during the selection phase if at least one class contained only a single
sample in the training set. Additionally, a small number of datasets (11 in total)
were excluded due to running time constraints, either because of a large number
of samples, which reduced the need for data augmentation, or because of long
series lengths, which significantly increased the computation time of warping-
based methods. Each dataset includes a predefined train-test split, which we use
without modification.

To reduce bias introduced by random seed selection during augmentation,
we generate five different versions for each augmentation technique using only
the training portion of each dataset. For each version, synthetic samples are
generated to match the size and class distribution of the original training set.
The test sets provided by the datasets are not used at any stage of this study, as
our evaluation focuses solely on the generative quality of the augmented training
data.

We use the LITE architecture [12, 18] as a feature extractor to compute
generative model evaluation metrics. For each dataset, a LITE model is trained
from scratch using the original training set, repeated across five different random
initializations. Each augmented dataset (five per technique) is evaluated using
each of the five LITE models, resulting in 25 combinations per augmentation
method. Reported results are averaged over these 25 runs.

All experiments were conducted on a machine with an NVIDIA RTX 3090
(24GB VRAM), an AMD Ryzen 9 5950X 16-core processor, and 64GB of RAM,
running Ubuntu 24.04. The source-code of this work is publicly available
on GitHub 4. We use the open-source package aeon [26] to compute warping
paths for DTW, MSM, and ShapeDTW, as well as to compute the EBA algo-
rithm used in the WBA augmentation method. To optimize computation, we
employ numba [24] for Just-In-Time (JIT) compilation of CPU-based augmen-
tation methods, and tensorflow [1] for GPU parallelization where applicable.

For three augmentation methods, RGW, DGW, and WBA, a similarity mea-
sure must be chosen to guide the transformation. In this study, we evaluate
each of these methods using the same set of six configurations: DTW (with
a window of 10% and with no window), ShapeDTW (with reach values of 7
and 15), and MSM (with cost values of 1.0 and 2.0). We refer to the resulting

4 https://github.com/MSD-IRIMAS/Data-Augmentation-4-TSC
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RGW variants as: RGW-DTW-0.1, RGW-DTW-None, RGW-SDTW-7, RGW-
SDTW-15, RGW-MSM-1, and RGW-MSM-2. DGW variants follow the same
naming convention. For WBA, we denote the methods as: WDBA-0.1, WDBA-
None, WSDBA-7, WSDBA-15, WMBA-1, and WMBA-2, where DBA [30] uses
DTW, SDBA [21] uses ShapeDTW, and MBA [9] uses MSM.

3.3 Experimental Results & Discussion

To facilitate interpretation and visualization of results, we use the Multi-Compa-
rison Matrix (MCM) [11]. The MCM provides a detailed pairwise (1-vs-1) com-
parison between competing methods, while also ranking them from best to worst
based on average performance. Rows and columns are ordered according to the
average metric across all datasets, where a lower value indicates better perfor-
mance. In our case, the evaluation statistic is the absolute difference between
metric values computed on generated versus real samples; thus, smaller values in-
dicate closer alignment with the real data distribution. Furthermore, the MCM
includes in each cell the win/tie/loss count between the paired methods, the
difference in average performance and a p-value to quantify the statistical sig-
nificance in the difference of performance between the paired methods over all
datasets. The used post-hoc test in this study is the two-sided Wilcoxon Signed
Rank Test [34].

We first apply the MCM separately to the three parameterized methods:
RGW, DGW, and WBA, to determine the best-performing configuration among
the six variants for each. Once the best configuration is selected for each of these
three methods, we add the remaining augmentation methods (Amplitude Warp-
ing (AW), Amplitude Scaling (AS), Window Warping (WW), and Jittering) and
conduct a full comparison across all techniques.

3.3.1 Comparing Configuration Setups

For the RGW method, Figure 2 shows the MCM results on the fidelity met-
rics, and Figure 3 shows the results on the diversity metrics. In both cases, the
RGW variant using the MSM similarity measure with a cost value of 2.0 (RGW-
MSM-2) ranks first. It also statistically outperforms all other configurations. For
this reason, we select RGW-MSM-2 as the representative configuration for the
RGW method.

Similarly, for the DGW method, the MCM results for fidelity and diversity
are shown in Figures 4 and 5, respectively. As with RGW, the DGW-MSM-2
configuration consistently ranks highest in both categories and is statistically
superior to the other variants. We therefore select DGW-MSM-2 as the best-
performing configuration for this method.

In contrast, for the WBA method, no single configuration dominates across
all metrics. From the fidelity and diversity MCMs (Figures 6 and 7), we ob-
serve that three configurations: WDBA-None, WSDBA-7, and WSDBA-15, per-
form comparably well. This selection is supported by high p-values in the pair-
wise comparisons, indicating no statistically significant differences between these
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Fig. 2. MCM comparing Random Guided Warping (RGW) configurations on fidelity.
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Fig. 3. MCM comparing Random Guided Warping (RGW) configurations on diversity.
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Fig. 4. MCM comparing Discriminative Guided Warping (DGW) configurations on
fidelity.
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Fig. 5. MCM comparing Discriminative Guided Warping (DGW) configurations on
diversity.

configurations across datasets. As a result, we retain all three as representative
configurations for WBA.
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Fig. 6. MCM comparing Weighted Barycenter Averaging (WBA) configurations on
fidelity.

While MSM yields strong results in RGW and DGW, where warping paths
are used to re-index individual time series, its performance in WBA is no-
tably weaker. This difference highlights how the role of the warping path affects
method suitability: RGW and DGW apply the MSM path to a single alignment,
where its flexibility enables discriminative, class-preserving warps. In contrast,
WBA relies on multiple consistent alignments across samples to compute stable
averages. MSM’s edit-based operations may produce inconsistent local corre-
spondences, making it less suitable for barycenter averaging, where alignment
noise is amplified during aggregation.
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Fig. 7. MCM comparing Weighted Barycenter Averaging (WBA) configurations on
diversity.

3.4 Full Comparison

In this section, we compare the best-performing configurations of DGW, RGW,
and WBA against the remaining augmentation methods: AS, AW, WW, and
Jittering. Figures 8 and 9 present the MCM results for fidelity and diversity,
respectively.
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Fig. 8. MCM presenting the comparison between all methods with their best configu-
ration in terms of fidelity.

For fidelity, DGW-MSM-2 ranks first, indicating its ability to generate sam-
ples that closely resemble the real distribution. RGW-MSM-2 follows closely, re-
inforcing MSM’s effectiveness for pairwise alignment. AS ranks third with a low
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Fig. 9. MCM presenting the comparison between all methods with their best configu-
ration in terms of diversity.

average difference of 0.6995, which is expected given its minimal transformation.
WBA methods perform worse than DGW and RGW, with average differences
above 1.2, possibly due to noise propagation during the averaging process. How-
ever, ShapeDBA outperforms WDBA, suggesting that ShapeDTW may be more
robust to outliers. AW and WW exhibit higher distortion in both amplitude and
time, resulting in an average performance above 6.7, and Jittering performs the
worst, exceeding 300, due to its disruptive nature.

For diversity, AS surprisingly ranks first with an average of 0.4278, indi-
cating it preserves variability close to that of the original data. DGW-MSM-2
and RGW-MSM-2 remain strong, ranking second and third, respectively, show-
ing they balance both fidelity and diversity well. Among WBA variants, DBA
slightly outperforms ShapeDBA, though the margin is small (< 0.05) and not
statistically significant. Interestingly, WW and Jittering improve in diversity
ranking compared to fidelity. This may be due to the convolutional nature of
the LITE feature extractor, which can filter out local noise or warping effects,
preserving distances in latent space, helpful for diversity, but not fidelity. AW
performs worst in diversity (avg. ≃ 1.9), likely because amplitude changes sig-
nificantly alter distances in latent space, which many diversity metrics rely on.

4 Conclusion

In this paper, we presented an extensive analysis of 22 data augmentation tech-
niques for time series classification, each evaluated across multiple configuration
setups. We framed augmentation methods as generative models and assessed
them accordingly using eight evaluation metrics that quantify fidelity and diver-
sity, applied to 131 publicly available datasets.
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To the best of our knowledge, this is the first work to systematically assess
time series augmentation from a generative model perspective. This evaluation
framework enables a more systematic and objective selection of augmentation
methods based on quantitative analysis rather than intuition or visual inspection,
prior to their use in performance-driven pipelines.

Our results suggest that DGW, when combined with the MSM similarity
measure, is the most effective method in terms of both fidelity and diversity.
As future work, we plan to conduct extensive experiments measuring the down-
stream performance impact of each method in both offline and online augmen-
tation settings. This would allow us to investigate potential causal links between
generative evaluation metrics and actual performance gains, further strengthen-
ing the selection criteria.
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