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Abstract. Global Average Pooling (GAP) has become a standard ag-
gregation method in deep learning models for Time Series Classification
(TSC), yet its effectiveness has recently been questioned by the research
community. In this work, we conduct an extensive empirical investiga-
tion into the validity of GAP as an aggregation mechanism by compar-
ing it to a diverse set of alternative methods. These include pooling-
based, feature-based, and learnable aggregation techniques, evaluated
across two well-established univariate (UCR) and multivariate (UEA)
TSC benchmarks. Our results reveal that GAP remains highly competi-
tive, consistently achieving strong classification performance with mini-
mal computational overhead. Importantly, none of the alternative meth-
ods were able to statistically significantly outperform GAP, either in
terms of accuracy or efficiency. Furthermore, we show that parametrized
and complex aggregators, such as those based on Recurrent Neural Net-
works, often degrade performance, reinforcing the principle that sim-
pler, non-parametric methods like GAP are not only sufficient but often
preferable. This study reaffirms GAP as a robust and efficient choice
for aggregation in deep neural networks for TSC tasks. All of our ex-
perimental results and source code are publicly available to ensure the
reproducibility of our work and also to allow the community to use the
raw results for further research.
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1 Introduction

Time series classification (TSC) [17, 8, 16] is an important task across domains
such as finance, healthcare, and environmental monitoring. Deep learning models
have emerged as effective solutions for TSC [12]. Although there are differences
among current state-of-the-art approaches, they generally share a common archi-
tecture based on convolutional operations. In these models, reducing the dimen-
sionality of intermediate representations is often necessary, typically achieved
through aggregation layers. These layers convert variable-length sequences or
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high-dimensional feature maps into fixed-size representations suitable for down-
stream tasks.

The most common approach to this problem is Global Average Pooling
(GAP), proposed in [15], which computes the mean value across a specific axis,
often spatial or temporal. GAP is widely used because it enables explainability
with methods such as Class Activation Maps [20]. Although GAP is simple and
effective, researchers often question its utility and advantages for TSC tasks [14].
This is because GAP assumes that all temporal features contribute equally to
the final decision.

However, a broader range of aggregation methods exists in the literature
and can be applied to TSC tasks. We categorize them into three groups: (1)
pooling-based, (2) feature-based, and (3) learning-based methods. Pooling-based
methods include GAP as well as alternatives such as the Global Max Pooling
(GMP). Additionally, static temporal versions of these methods apply pooling
locally over temporal segments rather than globally. Feature-based methods have
been primarily used in ROCKET [6] and its variants [18, 7]. These methods focus
on extracting statistical features from the activations of convolution operations.
Three types of features are considered: Proportion of Positive Values (PPV),
Mean of Positive Values (MPV), and Mean Index of Positive Values (MIPV).
We also consider three smoothed variants of these methods in our study. Finally,
learning-based methods involve the use of Recurrent Neural Networks (RNNs)
and their variants. RNNs remove the assumption of equal contribution across
all time steps and instead learn aggregation representations through weighted
accumulation over time. Some recent approaches, such as learnable dynamic
temporal pooling [14], also fall into this category, enabling adaptive, data-driven
pooling mechanisms.

While these alternatives have been used in various contexts, there is limited
work that systematically compares their effectiveness within the same architec-
tural backbone and experimental setup.

This paper presents an experimental study focused on the impact of alterna-
tives to the GAP layer in TSC models. By evaluating a diverse set of aggregation
techniques, we aim to shed light on how these layers influence classification ac-
curacy and model robustness. To validate our findings, we use 128 univariate
TSC datasets from the UCR archive [5] and 26 multivariate TSC datasets from
the UEA archive [1].

2 Aggregation layers

In this section, we present the selected variety of aggregation strategies. We or-
ganize the aggregation layers into three categories, as mentioned in the previous
section. Each category offers a different trade-off between simplicity, expressive-
ness, and computational cost. In the following subsections, we describe each
category in detail and present the specific variants used in our experiments.
To ensure consistency and clarity across all formulations, we use the following
notations throughout this section:
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– K: the number of feature channels (dimensions) in the input representation.
– k ∈ {1, . . . ,K}: index over the feature channels.
– T : the length of the time series.
– t ∈ {1, . . . , T}: index over the time steps.
– xk,t: the value at time step t in the k-th feature channel.
– T+

k : the number of positive elements in the sequence {xk,1, xk,2, . . . , xk,T }.

2.1 Pooling-Based Methods

The Global Average Pooling (GAP) layer averages all values along the time
dimension for each channel separately.

GAP =

[
1

T

T∑
t=1

xk,t

]K

k=1

(1)

The Global Max Pooling (GMP) layer operates similarly to GAP, however
instead of computing the average across the time dimension, it selects the max-
imum value.

GMP =
[

T
max
t=1

xk,t

]K
k=1

(2)

Moreover, the Static Temporal Average Pooling (STAP) layer averages val-
ues over predefined segments of the time dimension, rather than across the entire
temporal span such as GAP. This method divides the time series into equal-
length segments and computes the average within each segment.

STAP =


 1

S

i×S∑
t=(i−1)×S

xk,t

N

i=1


K

k=1

, (3)

where, N is the number of pooling operations and S is both the pool size and
the stride of the pooling operation calculated as:

S =

⌈
T

N

⌉
Whenever

⌈
T
S

⌉
≤ N − 1 (i.e., when T is too small to yield N equally-spaced

pools), we reduce N to N ′ =
⌈
T
S

⌉
and reshape the pooled output accordingly.

This ensures that the layer remains valid even for small T relative to N .

The Static Temporal Max Pooling (STMP) layer, similarly to STAP, applies
a maximum operation over the same predefined segments of the time dimension.

STMP =

[[
i×S
max

t=(i−1)×S
xk,t

]N
i=1

]K

k=1

(4)
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2.2 Feature-Based Methods

For feature-based methods, we examine techniques employed in the ROCKET
models [6, 7, 18].
The Proportion of Positive Values (PPV) discards the actual values of the
series and instead focuses on the number of positive values:

PPV =

 1

T

T∑
t=1

xk,t>0

1


K

k=1

=

[
T+
k

T

]K
k=1

(5)

This simple yet effective measure provides insight into the overall positivity
trend of the data. PPV was first introduced in Rocket [6] and was found to be
an exceptional feature extractor for MiniRocket [7] and is still used in Multi-
Rocket [18].
The Mean of Positive Values (MPV), unlike GAP, applies the average only
over the set of positive values instead of all possible values:

MPV =

 1

T+
k

T∑
t=1

xk,t>0

xk,t


K

k=1

(6)

By focusing only on positive values, this layer captures the magnitude of the
positive trend, offering a different perspective compared to GAP.
The Mean of Indices of Positive Values (MIPV) captures information about
the relative location of positive values. MIPV is computed by averaging the
relative location (indices) of all positive values in the array:

MIPV =




1

T+
k

T∑
t=1

xk,t>0

t− 1 if T+
k > 0

0 if T+
k = 0


K

k=1

(7)

In the case where there are no positive values, (T+
k = 0), MIPV results in

0. This definition differs from the original, in which the result in this specific
case will be -1[18]. The difference is motivated by the need to maintain con-
sistency with the approach used in the smooth MIPV, which will be discussed
subsequently.

Building upon the feature extraction techniques previously discussed, we in-
troduce a smooth threshold alternative for each layer. This approach employs
a parametrizable sigmoid function to replace the traditional threshold. Given
that the preceding layer’s output, which utilizes a ReLU activation, lies within
the range [0,+∞[, we incorporate a positive shifting constant to effectively man-
age this range. The parameters are fixed as described in Equation 8, with the
behaviour illustrated in Figure 1.
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Fig. 1. Comparison of hard and soft thresholding using sigmoid approximation.

∼ (xk,t > 0) = σ (α (xk,t − ϵ)) (8)

where σ(·) is the sigmoid function, defined as σ(z) = 1
1+e−z , α a hardness scaling

factor (set as α = 104) and ϵ a positive shifting constant (set as ϵ = 10−3)
We utilize the smooth threshold in feature-based aggregation methods. For

instance, the smoothed version of PPV, denoted as ∼ PPV, is computed as:

∼ PPV =

[
1

T

T∑
t=1

σ (α (xk,t − ϵ))

]K

k=1

(9)

Similarly, we utilize the smooth threshold in both MPV and MIPV and referr
to them as ∼ MPV and ∼ MIPV, respectively.

Additionally, we denote the usage of the Straight-Through Estimator (STE)
by the symbol "↑", indicating a custom gradient that bypasses the operations in
the backward pass while preserving forward behaviour. In this work, we apply
STE only to the PPV variant, denoted as ↑ PPV. The approach follows the
formulation introduced by Bengio et al. [2], in which the backward path avoids
discontinuous functions as identity mappings to enable end-to-end training de-
spite their non-differentiability.

2.3 Learning-Based Methods

Finally, to also explore aggregation methods capturing more complex temporal
dependencies within the time series data, we consider a Gated Recurrent
Unit (GRU) layer [3]. GRUs, introduced in 2014, are a type of Recurrent Neural
Network (RNN) architecture. We refer the reader to the original work in [3] for
further details about the functionality of GRUs.
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3 Experimental Evaluation

In this section, we present the experimental setup and results obtained from
evaluating the various aggregation layers discussed in the previous sections. The
primary objective of our experiments is to assess the effectiveness of the aggre-
gation layers in the context of TSC.

3.1 Experimental Setup

We conducted our experiments on two well-established benchmarks in the field
of time series classification (TSC). For univariate TSC tasks, we used the 128
datasets from the UCR archive [4], and for multivariate TSC tasks, we used the
26 datasets from the UEA archive [1].

For each dataset, we implement a consistent experimental protocol to en-
sure fair and comparable results. We systematically evaluate each aggregation
layer by integrating it into state-of-the-art deep learning models, trained with
common hyperparameters. This approach allows us to isolate the impact of each
aggregation layer on the classification performance. We compare the effect of
the aggregation layers on 4 different convolution-based architectures, FCN [19],
ResNet [19], Inception [13] and LITE [10] where for Inception and LITE we use a
single model rather than an ensemble of models. For multivariate time series, we
use LITEMV [11], the multivariate counterpart of LITE. The hyperparameter
setup used for all our experiments is presented in Table 1.

Hyperparameter Value / Description

Batch size min
(

|D|
10

, 16
)

where |D| is the number of training samples
Epochs 2 000
Model selection Best model selected based on training set performance
Learning rate schedule Reduce on plateau:

factor = 1
2

patience = 50

minLR = 10−4

Table 1. Training hyperparameters and settings.

Additionally, we explore combinations of different aggregation layers to in-
vestigate potential complementary effects that could enhance models accuracy.
With a comparison of 20 possible reducing methods or combinations, we end up
with 80 comparable cases.

Each of these cases is trained and tested individually 11 times on the 128
UCR and 26 UEA datasets. We perform 11 trainings for more robust results. For



Alternatives to Global Average Pooling for TSC 7

the comparison, we keep the median accuracy, which, in opposition to an average,
guarantees to correspond to a real performance. In total, 135 520 models (11×
20×4×(128+26)) have been trained and evaluated to obtain the results presented
in the following. In addition to the classification performance, we also compare
the number of parameters and training time for each case. Our source code
and raw results are available at https://github.com/MSD-IRIMAS/PoolParty-
4-TSC.

3.2 Experimental Results

In this section, we present and analyse the experimental results obtained from
evaluating the aggregation layers. In particular, we designed our experiments
to compare the performance of GAP, the most used aggregation layer, against
alternative methods.

GAP vs STAP First, we compare GAP and STAP to elucidate the differ-
ences in performance when using a global approach versus a segmented, static
temporal approach for averaging time series features. In particular, we aim to
understand how the temporal segmentation impacts the classification accuracy
and the model’s ability to capture local temporal features. We also assess the
combination of both pooling methods.

The Multi Comparison Matrices (MCMs) [9] representing the comparative
results are shown in Figure 2. We can notice that for Inception and ResNet
models, the GAP layer gives the best performance on both UCR and UEA
datasets. For smaller architectures like LITE and FCN, the STAP with 2 and 4
windows shows good results, but not significantly better than the GAP. Finally,
the combination of both GAP and STAP often results in lower performance than
a single pooling. However, focusing on LITE STAP cases, specifically STAP2 and
STAP4, we notice that STAP2 wins on 47 datasets and STAP4 on 52, where
39 of them are shared across the two cases. This indicates a regularity in the
performance improvement using those alternatives.

GAP vs Max Pooling Second, we compare the global and static temporal max
pooling. We also include “GAP GMP” cases which combine both aggregation
layers. The MCMs are in Figure 3. As before, GAP is still better on almost all
datasets.

GAP vs Feature-Based Third, we focus on comparing GAP with feature-
based methods. We individually compare each feature-based method, including
its smoothed versions (∼) and ↑ PPV. The results are shown in Figure 4. We can
notice that none of the selected feature-based methods perform statistically sig-
nificantly better than GAP. However, it is important to note that the smoothed
versions improve the results for PPV and that ↑ PPV significantly outperforms
both.
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Fig. 2. Comparison of Static Temporal Average Pooling with Global Average Pooling
on the UCR and UEA for the four selected models. From top to bottom : Inception
UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR, ResNet UEA, FCN UCR,
FCN UEA.
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Fig. 3. Comparison of Global Max Pooling and Static Temporal Max Pooling with
Global Average Pooling on the UCR and UEA for the four selected models. From top
to bottom : Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR,
ResNet UEA, FCN UCR, FCN UEA.
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Given these results, we selected the best resulting layers, MPV and ↑ PPV
and combined them with GAP. We also evaluated a ↑ PPV MPV MIPV combi-
nation, to be as close as possible to the MultiROCKET [18] framework. Those
results are shown in Figure 5. Even though some examples outperform GAP,
still no conclusion can be found on the statistically significant difference in per-
formance with GAP.

GAP vs GRU Finally, we present the results of using GRU layers compared to
GAP in the MCMs shown in Figure 6. These results reveal a significant degra-
dation in performance when using GRU, compared to non-learnable methods
such as GAP. This suggests that the use of recurrent architectures may not be
well suited for this task, potentially due to their complexity, or that aggregation
techniques should, in most cases, be non-learnable.

3.3 Efficiency Comparison

We present an efficiency comparison to explore the trade-off between perfor-
mance and computational cost. For our experiments, we used a High Performance
Computing (HPC) to handle the computational load. However, to maintain con-
sistency and control over the variables affecting training time measurements, the
timing experiments were conducted on a single computer setup. The computer
setup consists of an RTX 4090 GPU and an i9-14900KF CPU, running Windows
11 with the Windows Subsystem for Linux 2 (WSL2). This configuration allowed
us to accurately measure and compare the training times across different models
and layer options. Moreover, in order to limit the number of trainings on a single
computer, we chose to reduce the number of datasets used in order to obtain an
average train time. In total, we use only 32 datasets for the efficiency compar-
ison. We present this comparison for both number of parameters and training
time in Figure 7. This comparison shows that there is almost no significant dif-
ference in model complexity when using non-learnable aggregation techniques.
However, this is not the case with learnable layers such as GRU, where training
time increases dramatically.

3.4 Discussion

Throughout our experiments, GAP consistently demonstrated superior or equal
performance compared to other methods. These results underscore the effec-
tiveness of GAP in capturing the essential features of the data while reducing
dimensionality. The ability of GAP to summarize spatial information into a com-
pact representation likely contributed to its robust performance across various
tasks.

Interestingly, our results indicate that using GAP alone often yields better
results than combining GAP with additional methods. These findings suggest
that the simplicity and efficiency of GAP might be compromised when integrated
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Fig. 4. Comparison of ROCKET inspired feature extraction layers with Global Average
Pooling on the UCR and UEA for the four selected models. From top to bottom :
Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR, ResNet UEA,
FCN UCR, FCN UEA.
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Fig. 5. Comparison of ROCKET inspired feature extraction layers in addition to GAP
or mixed together with GAP on the UCR and UEA for the four selected models. From
top to bottom : Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR,
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Fig. 6. Comparison of Gated Recurrent Unit with 128 units with Global Average Pool-
ing on the UCR and UEA for the four selected models.

with more complex aggregation methods. The additional methods could intro-
duce noise or redundancy, thereby diminishing the overall performance. This
insight is interesting for model design, as it highlights the importance of simplic-
ity and the potential drawbacks of unnecessarily complex architectures.

Additionally, in contrast to the strong results of GAP, the performance of
GRU is notably poor across all datasets. GRUs, which are typically valued for
their ability to capture sequential dependencies, do not perform well in our
specific context. This outcome might be attributed to the nature of our data or
the tasks at hand, which potentially do not benefit from the sequential processing
strengths of GRUs. This finding suggests that, while GRUs can be powerful in
certain scenarios, they may not be universally applicable, especially on datasets
like the UCR and UEA.

4 Conclusion

In this work, we address ongoing concerns within the research community regard-
ing the use of Global Average Pooling (GAP) as an aggregation method in deep
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neural networks for Time Series Classification (TSC) tasks. We present com-
prehensive experiments comparing GAP with both existing and newly adapted
aggregation techniques, evaluated on two well-established univariate and multi-
variate TSC benchmarks. The alternative aggregation methods are categorized
into three groups: pooling-based, feature-based, and learning-based approaches.

Our empirical results demonstrate that GAP remains the most accurate and
efficient aggregation strategy, as no other method achieves statistically significant
improvements over GAP in terms of both average classification performance and
computational efficiency. In addition, we observe that STAP yields promising re-
sults specifically on smaller architectures such as LITE and FCN, highlighting
its potential in resource constrained environments. This study underscores that
GAP, a non-parametric, training-free, and computationally lightweight mecha-
nism, is a fundamental component of effective deep learning models for TSC.
Notably, complex learnable aggregators, such as Recurrent Neural Networks
(RNNs), perform poorly, reinforcing the principle that in the context of TSC,
simpler methods like GAP can indeed be superior.

As a final contribution, in an effort to promote transparency and support
future work, all of our experimental results and source code are publicly avail-
able https://github.com/MSD-IRIMAS/PoolParty-4-TSC. This ensures the re-
producibility of our study and allows the community to use the raw results for
extended research.
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