
A Deep Dive into Alternatives to the Global
Average Pooling for Time Series Classification

Cyril Meyer1[0000−0001−7262−999X] (�), Ali Ismail-Fawaz1[0000−0001−5385−3339],
Maxime Devanne1[0000−0002−1458−3855], Jonathan Weber1[0000−0002−3694−4703],

and Germain Forestier1,2[0000−0002−4960−7554]

1 Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
{first-name.last-name}@uha.fr

2 DSAI, Monash University, Melbourne, Australia
{first-name.last-name}@monash.edu

Abstract. Global Average Pooling (GAP) has become a standard ag-
gregation method in deep learning models for Time Series Classification
(TSC), yet its effectiveness has recently been questioned by the research
community. In this work, we conduct an extensive empirical investiga-
tion into the validity of GAP as an aggregation mechanism by compar-
ing it to a diverse set of alternative methods. These include pooling-
based, feature-based, and learnable aggregation techniques, evaluated
across two well-established univariate (UCR) and multivariate (UEA)
TSC benchmarks. Our results reveal that GAP remains highly competi-
tive, consistently achieving strong classification performance with mini-
mal computational overhead. Importantly, none of the alternative meth-
ods were able to statistically significantly outperform GAP, either in
terms of accuracy or efficiency. Furthermore, we show that parametrized
and complex aggregators, such as those based on Recurrent Neural Net-
works, often degrade performance, reinforcing the principle that sim-
pler, non-parametric methods like GAP are not only sufficient but often
preferable. This study reaffirms GAP as a robust and efficient choice
for aggregation in deep neural networks for TSC tasks. All of our ex-
perimental results and source code are publicly available to ensure the
reproducibility of our work and also to allow the community to use the
raw results for further research.

Keywords: Time Series Classification · Deep Learning · Pooling Layer.

1 Introduction

Time series classification (TSC) [17, 8, 16] is an important task across domains
such as finance, healthcare, and environmental monitoring. Deep learning models
have emerged as effective solutions for TSC [12]. Although there are differences
among current state-of-the-art approaches, they generally share a common archi-
tecture based on convolutional operations. In these models, reducing the dimen-
sionality of intermediate representations is often necessary, typically achieved
through aggregation layers. These layers convert variable-length sequences or

2 C. Meyer et al.

high-dimensional feature maps into fixed-size representations suitable for down-
stream tasks.

The most common approach to this problem is Global Average Pooling
(GAP), proposed in [15], which computes the mean value across a specific axis,
often spatial or temporal. GAP is widely used because it enables explainability
with methods such as Class Activation Maps [20]. Although GAP is simple and
effective, researchers often question its utility and advantages for TSC tasks [14].
This is because GAP assumes that all temporal features contribute equally to
the final decision.

However, a broader range of aggregation methods exists in the literature
and can be applied to TSC tasks. We categorize them into three groups: (1)
pooling-based, (2) feature-based, and (3) learning-based methods. Pooling-based
methods include GAP as well as alternatives such as the Global Max Pooling
(GMP). Additionally, static temporal versions of these methods apply pooling
locally over temporal segments rather than globally. Feature-based methods have
been primarily used in ROCKET [6] and its variants [18, 7]. These methods focus
on extracting statistical features from the activations of convolution operations.
Three types of features are considered: Proportion of Positive Values (PPV),
Mean of Positive Values (MPV), and Mean Index of Positive Values (MIPV).
We also consider three smoothed variants of these methods in our study. Finally,
learning-based methods involve the use of Recurrent Neural Networks (RNNs)
and their variants. RNNs remove the assumption of equal contribution across
all time steps and instead learn aggregation representations through weighted
accumulation over time. Some recent approaches, such as learnable dynamic
temporal pooling [14], also fall into this category, enabling adaptive, data-driven
pooling mechanisms.

While these alternatives have been used in various contexts, there is limited
work that systematically compares their effectiveness within the same architec-
tural backbone and experimental setup.

This paper presents an experimental study focused on the impact of alterna-
tives to the GAP layer in TSC models. By evaluating a diverse set of aggregation
techniques, we aim to shed light on how these layers influence classification ac-
curacy and model robustness. To validate our findings, we use 128 univariate
TSC datasets from the UCR archive [5] and 26 multivariate TSC datasets from
the UEA archive [1].

2 Aggregation layers

In this section, we present the selected variety of aggregation strategies. We or-
ganize the aggregation layers into three categories, as mentioned in the previous
section. Each category offers a different trade-off between simplicity, expressive-
ness, and computational cost. In the following subsections, we describe each
category in detail and present the specific variants used in our experiments.
To ensure consistency and clarity across all formulations, we use the following
notations throughout this section:

Alternatives to Global Average Pooling for TSC 3

– K: the number of feature channels (dimensions) in the input representation.
– k ∈ {1, . . . ,K}: index over the feature channels.
– T : the length of the time series.
– t ∈ {1, . . . , T}: index over the time steps.
– xk,t: the value at time step t in the k-th feature channel.
– T+

k : the number of positive elements in the sequence {xk,1, xk,2, . . . , xk,T }.

2.1 Pooling-Based Methods

The Global Average Pooling (GAP) layer averages all values along the time
dimension for each channel separately.

GAP =

[
1

T

T∑
t=1

xk,t

]K

k=1

(1)

The Global Max Pooling (GMP) layer operates similarly to GAP, however
instead of computing the average across the time dimension, it selects the max-
imum value.

GMP =
[

T
max
t=1

xk,t

]K
k=1

(2)

Moreover, the Static Temporal Average Pooling (STAP) layer averages val-
ues over predefined segments of the time dimension, rather than across the entire
temporal span such as GAP. This method divides the time series into equal-
length segments and computes the average within each segment.

STAP =


 1

S

i×S∑
t=(i−1)×S

xk,t

N

i=1


K

k=1

, (3)

where, N is the number of pooling operations and S is both the pool size and
the stride of the pooling operation calculated as:

S =

⌈
T

N

⌉
Whenever

⌈
T
S

⌉
≤ N − 1 (i.e., when T is too small to yield N equally-spaced

pools), we reduce N to N ′ =
⌈
T
S

⌉
and reshape the pooled output accordingly.

This ensures that the layer remains valid even for small T relative to N .

The Static Temporal Max Pooling (STMP) layer, similarly to STAP, applies
a maximum operation over the same predefined segments of the time dimension.

STMP =

[[
i×S
max

t=(i−1)×S
xk,t

]N
i=1

]K

k=1

(4)

4 C. Meyer et al.

2.2 Feature-Based Methods

For feature-based methods, we examine techniques employed in the ROCKET
models [6, 7, 18].
The Proportion of Positive Values (PPV) discards the actual values of the
series and instead focuses on the number of positive values:

PPV =

 1

T

T∑
t=1

xk,t>0

1


K

k=1

=

[
T+
k

T

]K
k=1

(5)

This simple yet effective measure provides insight into the overall positivity
trend of the data. PPV was first introduced in Rocket [6] and was found to be
an exceptional feature extractor for MiniRocket [7] and is still used in Multi-
Rocket [18].
The Mean of Positive Values (MPV), unlike GAP, applies the average only
over the set of positive values instead of all possible values:

MPV =

 1

T+
k

T∑
t=1

xk,t>0

xk,t


K

k=1

(6)

By focusing only on positive values, this layer captures the magnitude of the
positive trend, offering a different perspective compared to GAP.
The Mean of Indices of Positive Values (MIPV) captures information about
the relative location of positive values. MIPV is computed by averaging the
relative location (indices) of all positive values in the array:

MIPV =




1

T+
k

T∑
t=1

xk,t>0

t− 1 if T+
k > 0

0 if T+
k = 0


K

k=1

(7)

In the case where there are no positive values, (T+
k = 0), MIPV results in

0. This definition differs from the original, in which the result in this specific
case will be -1[18]. The difference is motivated by the need to maintain con-
sistency with the approach used in the smooth MIPV, which will be discussed
subsequently.

Building upon the feature extraction techniques previously discussed, we in-
troduce a smooth threshold alternative for each layer. This approach employs
a parametrizable sigmoid function to replace the traditional threshold. Given
that the preceding layer’s output, which utilizes a ReLU activation, lies within
the range [0,+∞[, we incorporate a positive shifting constant to effectively man-
age this range. The parameters are fixed as described in Equation 8, with the
behaviour illustrated in Figure 1.

Alternatives to Global Average Pooling for TSC 5

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
xk, t ×10 3

0.0

0.2

0.4

0.6

0.8

1.0
Fu

nc
tio

n
Va

lu
e

Threshold VS Smooth Threshold

(xk, t > 0)
((xk, t))

Fig. 1. Comparison of hard and soft thresholding using sigmoid approximation.

∼ (xk,t > 0) = σ (α (xk,t − ϵ)) (8)

where σ(·) is the sigmoid function, defined as σ(z) = 1
1+e−z , α a hardness scaling

factor (set as α = 104) and ϵ a positive shifting constant (set as ϵ = 10−3)
We utilize the smooth threshold in feature-based aggregation methods. For

instance, the smoothed version of PPV, denoted as ∼ PPV, is computed as:

∼ PPV =

[
1

T

T∑
t=1

σ (α (xk,t − ϵ))

]K

k=1

(9)

Similarly, we utilize the smooth threshold in both MPV and MIPV and referr
to them as ∼ MPV and ∼ MIPV, respectively.

Additionally, we denote the usage of the Straight-Through Estimator (STE)
by the symbol "↑", indicating a custom gradient that bypasses the operations in
the backward pass while preserving forward behaviour. In this work, we apply
STE only to the PPV variant, denoted as ↑ PPV. The approach follows the
formulation introduced by Bengio et al. [2], in which the backward path avoids
discontinuous functions as identity mappings to enable end-to-end training de-
spite their non-differentiability.

2.3 Learning-Based Methods

Finally, to also explore aggregation methods capturing more complex temporal
dependencies within the time series data, we consider a Gated Recurrent
Unit (GRU) layer [3]. GRUs, introduced in 2014, are a type of Recurrent Neural
Network (RNN) architecture. We refer the reader to the original work in [3] for
further details about the functionality of GRUs.

6 C. Meyer et al.

3 Experimental Evaluation

In this section, we present the experimental setup and results obtained from
evaluating the various aggregation layers discussed in the previous sections. The
primary objective of our experiments is to assess the effectiveness of the aggre-
gation layers in the context of TSC.

3.1 Experimental Setup

We conducted our experiments on two well-established benchmarks in the field
of time series classification (TSC). For univariate TSC tasks, we used the 128
datasets from the UCR archive [4], and for multivariate TSC tasks, we used the
26 datasets from the UEA archive [1].

For each dataset, we implement a consistent experimental protocol to en-
sure fair and comparable results. We systematically evaluate each aggregation
layer by integrating it into state-of-the-art deep learning models, trained with
common hyperparameters. This approach allows us to isolate the impact of each
aggregation layer on the classification performance. We compare the effect of
the aggregation layers on 4 different convolution-based architectures, FCN [19],
ResNet [19], Inception [13] and LITE [10] where for Inception and LITE we use a
single model rather than an ensemble of models. For multivariate time series, we
use LITEMV [11], the multivariate counterpart of LITE. The hyperparameter
setup used for all our experiments is presented in Table 1.

Hyperparameter Value / Description

Batch size min
(

|D|
10

, 16
)

where |D| is the number of training samples
Epochs 2 000
Model selection Best model selected based on training set performance
Learning rate schedule Reduce on plateau:

factor = 1
2

patience = 50

minLR = 10−4

Table 1. Training hyperparameters and settings.

Additionally, we explore combinations of different aggregation layers to in-
vestigate potential complementary effects that could enhance models accuracy.
With a comparison of 20 possible reducing methods or combinations, we end up
with 80 comparable cases.

Each of these cases is trained and tested individually 11 times on the 128
UCR and 26 UEA datasets. We perform 11 trainings for more robust results. For

Alternatives to Global Average Pooling for TSC 7

the comparison, we keep the median accuracy, which, in opposition to an average,
guarantees to correspond to a real performance. In total, 135 520 models (11×
20×4×(128+26)) have been trained and evaluated to obtain the results presented
in the following. In addition to the classification performance, we also compare
the number of parameters and training time for each case. Our source code
and raw results are available at https://github.com/MSD-IRIMAS/PoolParty-
4-TSC.

3.2 Experimental Results

In this section, we present and analyse the experimental results obtained from
evaluating the aggregation layers. In particular, we designed our experiments
to compare the performance of GAP, the most used aggregation layer, against
alternative methods.

GAP vs STAP First, we compare GAP and STAP to elucidate the differ-
ences in performance when using a global approach versus a segmented, static
temporal approach for averaging time series features. In particular, we aim to
understand how the temporal segmentation impacts the classification accuracy
and the model’s ability to capture local temporal features. We also assess the
combination of both pooling methods.

The Multi Comparison Matrices (MCMs) [9] representing the comparative
results are shown in Figure 2. We can notice that for Inception and ResNet
models, the GAP layer gives the best performance on both UCR and UEA
datasets. For smaller architectures like LITE and FCN, the STAP with 2 and 4
windows shows good results, but not significantly better than the GAP. Finally,
the combination of both GAP and STAP often results in lower performance than
a single pooling. However, focusing on LITE STAP cases, specifically STAP2 and
STAP4, we notice that STAP2 wins on 47 datasets and STAP4 on 52, where
39 of them are shared across the two cases. This indicates a regularity in the
performance improvement using those alternatives.

GAP vs Max Pooling Second, we compare the global and static temporal max
pooling. We also include “GAP GMP” cases which combine both aggregation
layers. The MCMs are in Figure 3. As before, GAP is still better on almost all
datasets.

GAP vs Feature-Based Third, we focus on comparing GAP with feature-
based methods. We individually compare each feature-based method, including
its smoothed versions (∼) and ↑ PPV. The results are shown in Figure 4. We can
notice that none of the selected feature-based methods perform statistically sig-
nificantly better than GAP. However, it is important to note that the smoothed
versions improve the results for PPV and that ↑ PPV significantly outperforms
both.

8 C. Meyer et al.

Incept GAP
0.8319

Incept STAP2
0.8277

Incept STAP4
0.8192

Incept GAP STAP2/4/8
0.8121

Incept STAP8
0.8097

Incept GAP
0.8319

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0042
64 / 21 / 43

0.0276

0.0127
65 / 24 / 39

0.0030

0.0197
79 / 13 / 36

0.0001

0.0221
76 / 17 / 35

0.0001

Mean-Accuracy

If in bold, then
p-value < 0.05 0.02 0.00 0.02

Mean-Difference

Incept GAP
0.7006

Incept STAP2
0.6915

Incept STAP4
0.6912

Incept GAP STAP2/4/8
0.6868

Incept STAP8
0.6827

Incept GAP
0.7006

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0091
14 / 5 / 7
0.2616

0.0094
14 / 4 / 8
0.2572

0.0138
16 / 3 / 7
0.1336

0.0179
13 / 6 / 7
0.0913

Mean-Accuracy

If in bold, then
p-value < 0.05 0.015 0.000 0.015

LITE STAP2
0.8243

LITE STAP4
0.8241

LITE GAP
0.8194

LITE GAP STAP2/4/8
0.8189

LITE STAP8
0.8166

LITE GAP
0.8194

-0.0048
60 / 21 / 47

0.6083

-0.0046
56 / 20 / 52

0.7576

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0005
59 / 16 / 53

0.4384

0.0029
59 / 18 / 51

0.3288

Mean-Accuracy

If in bold, then
p-value < 0.05 0.004 0.000 0.004

LITE STAP4
0.7003

LITE STAP2
0.6957

LITE GAP
0.6925

LITE GAP STAP2/4/8
0.6917

LITE STAP8
0.6895

LITE GAP
0.6925

-0.0078
14 / 3 / 9
0.7700

-0.0031
11 / 5 / 10

0.8184

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0008
17 / 0 / 9
0.3666

0.0031
17 / 2 / 7
0.2859

Mean-Accuracy

If in bold, then
p-value < 0.05 0.008 0.000 0.008

ResNet GAP
0.8104

ResNet STAP2
0.8091

ResNet STAP4
0.8068

ResNet GAP STAP2/4/8
0.8010

ResNet STAP8
0.7992

ResNet GAP
0.8104

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0013
70 / 17 / 41

0.0044

0.0037
67 / 9 / 52

0.1644

0.0094
73 / 9 / 46

0.0270

0.0112
74 / 9 / 45

0.0177

Mean-Accuracy

If in bold, then
p-value < 0.05 0.01 0.00 0.01

ResNet GAP
0.6865

ResNet STAP2
0.6821

ResNet STAP4
0.6809

ResNet GAP STAP2/4/8
0.6780

ResNet STAP8
0.6747

ResNet GAP
0.6865

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0045
14 / 2 / 10

0.5936

0.0056
15 / 2 / 9
0.3807

0.0085
14 / 2 / 10

0.2859

0.0119
12 / 6 / 8
0.2825

Mean-Accuracy

If in bold, then
p-value < 0.05 0.01 0.00 0.01

FCN STAP2
0.8038

FCN STAP4
0.8010

FCN GAP STAP2/4/8
0.7977

FCN STAP8
0.7970

FCN GAP
0.7906

FCN GAP
0.7906

-0.0133
55 / 16 / 57

0.4162

-0.0104
57 / 13 / 58

0.7399

-0.0072
60 / 11 / 57

0.9053

-0.0064
66 / 7 / 55

0.7653

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

Mean-Accuracy

If in bold, then
p-value < 0.05 0.015 0.000 0.015

FCN GAP
0.6957

FCN STAP4
0.6900

FCN STAP2
0.6898

FCN GAP STAP2/4/8
0.6856

FCN STAP8
0.6838

FCN GAP
0.6957

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0057
13 / 2 / 11

0.5590

0.0059
14 / 3 / 9
0.6935

0.0102
13 / 3 / 10

0.4232

0.0120
13 / 3 / 10

0.3152

Mean-Accuracy

If in bold, then
p-value < 0.05 0.01 0.00 0.01

Fig. 2. Comparison of Static Temporal Average Pooling with Global Average Pooling
on the UCR and UEA for the four selected models. From top to bottom : Inception
UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR, ResNet UEA, FCN UCR,
FCN UEA.

Alternatives to Global Average Pooling for TSC 9

Incept GAP
0.8319

Incept GMP STMP2/4/8
0.8167

Incept GAP GMP
0.8108

Incept GMP
0.8089

Incept GAP
0.8319

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0151
74 / 16 / 38

0.0010

0.0211
89 / 18 / 21
 1e-04

0.0230
85 / 21 / 22
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.02 0.00 0.02

Mean-Difference

Incept GAP
0.7006

Incept GMP STMP2/4/8
0.6838

Incept GAP GMP
0.6757

Incept GMP
0.6709

Incept GAP
0.7006

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0168
17 / 2 / 7
0.0818

0.0249
14 / 7 / 5
0.0078

0.0297
17 / 5 / 4
0.0006

Mean-Accuracy

If in bold, then
p-value < 0.05 0.025 0.000 0.025

LITE GAP
0.8194

LITE GMP STMP2/4/8
0.8025

LITE GAP GMP
0.7749

LITE GMP
0.7735

LITE GAP
0.8194

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0170
80 / 9 / 39
 1e-04

0.0445
95 / 12 / 21
 1e-04

0.0459
96 / 10 / 22
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.04 0.00 0.04

LITE GAP
0.6925

LITE GMP STMP2/4/8
0.6624

LITE GAP GMP
0.6476

LITE GMP
0.6434

LITE GAP
0.6925

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0301
18 / 1 / 7
0.0505

0.0449
20 / 3 / 3
0.0005

0.0491
21 / 2 / 3
0.0008

Mean-Accuracy

If in bold, then
p-value < 0.05 0.04 0.00 0.04

ResNet GAP
0.8104

ResNet GMP STMP2/4/8
0.8027

ResNet GAP GMP
0.7803

ResNet GMP
0.7744

ResNet GAP
0.8104

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0077
73 / 10 / 45

0.0230

0.0302
88 / 7 / 33
 1e-04

0.0360
90 / 8 / 30
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.03 0.00 0.03

ResNet GAP
0.6865

ResNet GMP STMP2/4/8
0.6751

ResNet GAP GMP
0.6612

ResNet GMP
0.6556

ResNet GAP
0.6865

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0114
17 / 0 / 9
0.4311

0.0253
17 / 3 / 6
0.0092

0.0309
19 / 4 / 3
0.0010

Mean-Accuracy

If in bold, then
p-value < 0.05 0.025 0.000 0.025

FCN GMP STMP2/4/8
0.7977

FCN GAP
0.7906

FCN GAP GMP
0.7616

FCN GMP
0.7561

FCN GAP
0.7906

-0.0071
63 / 8 / 57

0.7826

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0290
83 / 12 / 33
 1e-04

0.0344
86 / 9 / 33
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.03 0.00 0.03

FCN GAP
0.6957

FCN GMP STMP2/4/8
0.6802

FCN GAP GMP
0.6604

FCN GMP
0.6534

FCN GAP
0.6957

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0155
17 / 2 / 7
0.1440

0.0353
19 / 3 / 4
0.0013

0.0424
22 / 2 / 2
0.0001

Mean-Accuracy

If in bold, then
p-value < 0.05 0.04 0.00 0.04

Fig. 3. Comparison of Global Max Pooling and Static Temporal Max Pooling with
Global Average Pooling on the UCR and UEA for the four selected models. From top
to bottom : Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR,
ResNet UEA, FCN UCR, FCN UEA.

10 C. Meyer et al.

Given these results, we selected the best resulting layers, MPV and ↑ PPV
and combined them with GAP. We also evaluated a ↑ PPV MPV MIPV combi-
nation, to be as close as possible to the MultiROCKET [18] framework. Those
results are shown in Figure 5. Even though some examples outperform GAP,
still no conclusion can be found on the statistically significant difference in per-
formance with GAP.

GAP vs GRU Finally, we present the results of using GRU layers compared to
GAP in the MCMs shown in Figure 6. These results reveal a significant degra-
dation in performance when using GRU, compared to non-learnable methods
such as GAP. This suggests that the use of recurrent architectures may not be
well suited for this task, potentially due to their complexity, or that aggregation
techniques should, in most cases, be non-learnable.

3.3 Efficiency Comparison

We present an efficiency comparison to explore the trade-off between perfor-
mance and computational cost. For our experiments, we used a High Performance
Computing (HPC) to handle the computational load. However, to maintain con-
sistency and control over the variables affecting training time measurements, the
timing experiments were conducted on a single computer setup. The computer
setup consists of an RTX 4090 GPU and an i9-14900KF CPU, running Windows
11 with the Windows Subsystem for Linux 2 (WSL2). This configuration allowed
us to accurately measure and compare the training times across different models
and layer options. Moreover, in order to limit the number of trainings on a single
computer, we chose to reduce the number of datasets used in order to obtain an
average train time. In total, we use only 32 datasets for the efficiency compar-
ison. We present this comparison for both number of parameters and training
time in Figure 7. This comparison shows that there is almost no significant dif-
ference in model complexity when using non-learnable aggregation techniques.
However, this is not the case with learnable layers such as GRU, where training
time increases dramatically.

3.4 Discussion

Throughout our experiments, GAP consistently demonstrated superior or equal
performance compared to other methods. These results underscore the effec-
tiveness of GAP in capturing the essential features of the data while reducing
dimensionality. The ability of GAP to summarize spatial information into a com-
pact representation likely contributed to its robust performance across various
tasks.

Interestingly, our results indicate that using GAP alone often yields better
results than combining GAP with additional methods. These findings suggest
that the simplicity and efficiency of GAP might be compromised when integrated

Alternatives to Global Average Pooling for TSC 11

Incept GAP
0.8319

Incept MPV
0.8293

Incept PPV
0.8147

Incept ~MPV
0.8116

Incept ~PPV
0.8010

Incept PPV
0.7022

Incept MIPV
0.6879

Incept ~MIPV
0.5302

Incept GAP
0.8319

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0026
59 / 32 / 37

0.0085

0.0171
74 / 18 / 36

0.0002

0.0202
91 / 18 / 19
 1e-04

0.0308
96 / 14 / 18
 1e-04

0.1296
109 / 6 / 13
 1e-04

0.1440
114 / 4 / 10
 1e-04

0.3016
123 / 0 / 5
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.25 0.00 0.25

Mean-Difference

Incept GAP
0.7006

Incept MPV
0.6982

Incept PPV
0.6960

Incept ~MPV
0.6920

Incept ~PPV
0.6899

Incept PPV
0.6285

Incept MIPV
0.5977

Incept ~MIPV
0.4959

Incept GAP
0.7006

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0024
11 / 6 / 9
0.5224

0.0046
10 / 7 / 9
0.6717

0.0086
15 / 4 / 7
0.0768

0.0107
13 / 6 / 7
0.1519

0.0721
22 / 1 / 3
0.0004

0.1029
22 / 3 / 1
0.0001

0.2047
24 / 0 / 2
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.2 0.0 0.2

LITE GAP
0.8194

LITE MPV
0.8118

LITE PPV
0.8024

LITE ~MPV
0.8017

LITE ~PPV
0.7884

LITE MIPV
0.6903

LITE PPV
0.6230

LITE ~MIPV
0.5073

LITE GAP
0.8194

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0076
73 / 29 / 26
 1e-04

0.0171
77 / 19 / 32
 1e-04

0.0177
88 / 9 / 31
 1e-04

0.0310
84 / 14 / 30
 1e-04

0.1291
120 / 2 / 6
 1e-04

0.1964
118 / 2 / 8
 1e-04

0.3121
126 / 0 / 2
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.25 0.00 0.25

LITE PPV
0.6956

LITE GAP
0.6925

LITE MPV
0.6862

LITE ~PPV
0.6848

LITE ~MPV
0.6758

LITE MIPV
0.6083

LITE PPV
0.5369

LITE ~MIPV
0.4533

LITE GAP
0.6925

-0.0030
10 / 7 / 9
0.9898

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0064
15 / 5 / 6
0.0321

0.0078
12 / 7 / 7
0.3895

0.0168
18 / 2 / 6
0.0181

0.0842
20 / 1 / 5
0.0048

0.1557
23 / 0 / 3
0.0001

0.2392
24 / 1 / 1
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.2 0.0 0.2

ResNet GAP
0.8104

ResNet MPV
0.7936

ResNet PPV
0.7918

ResNet ~MPV
0.7629

ResNet ~PPV
0.7425

ResNet PPV
0.6759

ResNet MIPV
0.6283

ResNet ~MIPV
0.5296

ResNet GAP
0.8104

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0169
92 / 11 / 25
 1e-04

0.0186
84 / 11 / 33
 1e-04

0.0475
90 / 9 / 29
 1e-04

0.0680
99 / 9 / 20
 1e-04

0.1346
111 / 4 / 13
 1e-04

0.1821
116 / 3 / 9
 1e-04

0.2809
124 / 0 / 4
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.25 0.00 0.25

ResNet GAP
0.6865

ResNet PPV
0.6862

ResNet MPV
0.6802

ResNet ~PPV
0.6673

ResNet ~MPV
0.6546

ResNet PPV
0.6116

ResNet MIPV
0.5563

ResNet ~MIPV
0.4721

ResNet GAP
0.6865

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0004
9 / 6 / 11
0.8179

0.0063
17 / 5 / 4
0.0063

0.0193
16 / 4 / 6
0.0314

0.0320
17 / 5 / 4
0.0007

0.0750
19 / 1 / 6
0.0014

0.1302
22 / 1 / 3
0.0002

0.2144
23 / 0 / 3
0.0001

Mean-Accuracy

If in bold, then
p-value < 0.05 0.2 0.0 0.2

FCN GAP
0.7906

FCN MPV
0.7741

FCN ~MPV
0.7565

FCN PPV
0.7549

FCN ~PPV
0.7267

FCN PPV
0.6749

FCN MIPV
0.6277

FCN ~MIPV
0.5082

FCN GAP
0.7906

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0165
76 / 13 / 39

0.0002

0.0340
86 / 6 / 36
 1e-04

0.0357
92 / 15 / 21
 1e-04

0.0639
92 / 10 / 26
 1e-04

0.1157
109 / 3 / 16
 1e-04

0.1628
109 / 4 / 15
 1e-04

0.2824
118 / 0 / 10
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.25 0.00 0.25

FCN GAP
0.6957

FCN PPV
0.6887

FCN MPV
0.6868

FCN ~PPV
0.6756

FCN ~MPV
0.6605

FCN PPV
0.6294

FCN MIPV
0.5659

FCN ~MIPV
0.4555

FCN GAP
0.6957

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0071
13 / 6 / 7
0.1519

0.0089
14 / 7 / 5
0.0363

0.0202
16 / 5 / 5
0.0068

0.0352
21 / 2 / 3
0.0001

0.0663
24 / 1 / 1
0.0001

0.1299
22 / 1 / 3
0.0003

0.2403
25 / 0 / 1
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.2 0.0 0.2

Fig. 4. Comparison of ROCKET inspired feature extraction layers with Global Average
Pooling on the UCR and UEA for the four selected models. From top to bottom :
Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR, ResNet UEA,
FCN UCR, FCN UEA.

12 C. Meyer et al.

Incept GAP MPV
0.8328

Incept GAP
0.8319

Incept GAP MPV PPV
0.8306

Incept GAP PPV
0.8294

Incept PPV MPV MIPV
0.7845

Incept GAP
0.8319

-0.0009
55 / 34 / 39

0.0877

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0013
64 / 30 / 34

0.0043

0.0024
53 / 35 / 40

0.2294

0.0474
101 / 13 / 14

 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.04 0.00 0.04

Mean-Difference

Incept GAP
0.7006

Incept GAP MPV
0.6975

Incept GAP PPV
0.6967

Incept GAP MPV PPV
0.6901

Incept PPV MPV MIPV
0.6811

Incept GAP
0.7006

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0031
10 / 8 / 8
0.6889

0.0039
8 / 9 / 9
0.9689

0.0105
11 / 8 / 7
0.2558

0.0195
16 / 5 / 5
0.0107

Mean-Accuracy

If in bold, then
p-value < 0.05 0.02 0.00 0.02

LITE GAP
0.8194

LITE GAP MPV
0.8178

LITE GAP MPV PPV
0.8147

LITE GAP PPV
0.8130

LITE PPV MPV MIPV
0.7375

LITE GAP
0.8194

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0016
60 / 27 / 41

0.0559

0.0047
70 / 27 / 31

0.0001

0.0064
70 / 26 / 32

0.0002

0.0819
110 / 9 / 9
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.08 0.00 0.08

LITE GAP MPV PPV
0.6934

LITE GAP PPV
0.6929

LITE GAP
0.6925

LITE GAP MPV
0.6921

LITE PPV MPV MIPV
0.6439

LITE GAP
0.6925

-0.0009
15 / 4 / 7
0.2364

-0.0003
7 / 11 / 8
0.8321

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0004
6 / 11 / 9
0.7404

0.0486
22 / 1 / 3
0.0016

Mean-Accuracy

If in bold, then
p-value < 0.05 0.04 0.00 0.04

ResNet GAP
0.8104

ResNet GAP PPV
0.8084

ResNet GAP MPV
0.8055

ResNet GAP MPV PPV
0.8037

ResNet PPV MPV MIPV
0.7421

ResNet GAP
0.8104

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0020
62 / 28 / 38

0.0351

0.0049
72 / 17 / 39

0.0001

0.0068
70 / 31 / 27
 1e-04

0.0683
109 / 7 / 12
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.06 0.00 0.06

ResNet GAP
0.6865

ResNet GAP MPV
0.6852

ResNet GAP MPV PPV
0.6830

ResNet GAP PPV
0.6825

ResNet PPV MPV MIPV
0.6577

ResNet GAP
0.6865

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0013
14 / 5 / 7
0.0922

0.0036
13 / 7 / 6
0.0437

0.0040
12 / 7 / 7
0.0465

0.0289
21 / 1 / 4
0.0014

Mean-Accuracy

If in bold, then
p-value < 0.05 0.025 0.000 0.025

FCN GAP
0.7906

FCN GAP MPV
0.7859

FCN GAP MPV PPV
0.7847

FCN GAP PPV
0.7823

FCN PPV MPV MIPV
0.7119

FCN GAP
0.7906

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0046
51 / 24 / 53

0.7837

0.0059
65 / 23 / 40

0.0151

0.0083
61 / 32 / 35

0.0041

0.0787
100 / 3 / 25
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05 0.08 0.00 0.08

FCN GAP
0.6957

FCN GAP MPV PPV
0.6952

FCN GAP PPV
0.6922

FCN GAP MPV
0.6909

FCN PPV MPV MIPV
0.6628

FCN GAP
0.6957

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0006
12 / 8 / 6
0.1375

0.0036
13 / 7 / 6
0.0900

0.0048
14 / 7 / 5
0.0230

0.0330
21 / 2 / 3
0.0007

Mean-Accuracy

If in bold, then
p-value < 0.05 0.03 0.00 0.03

Fig. 5. Comparison of ROCKET inspired feature extraction layers in addition to GAP
or mixed together with GAP on the UCR and UEA for the four selected models. From
top to bottom : Inception UCR, Inception UEA, LITE UCR, LITE UEA, ResNet UCR,
ResNet UEA, FCN UCR, FCN UEA.

Alternatives to Global Average Pooling for TSC 13

Incept GAP
0.8319

Incept GRU128
0.7053

FCN GRU128
0.6769

ResNet GRU128
0.6749

LITE GRU128
0.6748

Incept GAP
0.8319

LITE GAP
0.8194

ResNet GAP
0.8104

FCN GAP
0.7906

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.1266
108 / 6 / 14
 1e-04

0.1550
114 / 4 / 10
 1e-04

0.1569
110 / 5 / 13
 1e-04

0.1570
116 / 5 / 7
 1e-04

-0.0124
31 / 21 / 76
 1e-04

0.1141
103 / 8 / 17
 1e-04

0.1425
112 / 5 / 11
 1e-04

0.1445
109 / 3 / 16
 1e-04

0.1446
110 / 5 / 13
 1e-04

-0.0214
36 / 16 / 76
 1e-04

0.1051
98 / 5 / 25
 1e-04

0.1335
106 / 5 / 17
 1e-04

0.1355
103 / 4 / 21
 1e-04

0.1356
107 / 3 / 18
 1e-04

-0.0413
28 / 12 / 88
 1e-04

0.0853
90 / 3 / 35
 1e-04

0.1137
95 / 6 / 27
 1e-04

0.1156
96 / 3 / 29
 1e-04

0.1157
102 / 4 / 22
 1e-04

Mean-Accuracy

If in bold, then
p-value < 0.05

0.15 0.00 0.15
Mean-Difference

Incept GAP
0.7006

Incept GRU128
0.6242

LITE GRU128
0.6134

FCN GRU128
0.6080

ResNet GRU128
0.5960

Incept GAP
0.7006

FCN GAP
0.6957

LITE GAP
0.6925

ResNet GAP
0.6865

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0764
19 / 2 / 5
0.0009

0.0872
22 / 2 / 2
0.0002

0.0926
20 / 2 / 4
0.0002

0.1046
20 / 1 / 5
0.0003

-0.0049
11 / 2 / 13

0.5849

0.0716
19 / 1 / 6
0.0023

0.0824
20 / 0 / 6
0.0003

0.0877
21 / 1 / 4
0.0004

0.0997
22 / 0 / 4
 1e-04

-0.0081
11 / 3 / 12

0.5250

0.0684
17 / 0 / 9
0.0164

0.0792
20 / 1 / 5
0.0016

0.0845
20 / 1 / 5
0.0023

0.0965
21 / 0 / 5
0.0024

-0.0141
9 / 3 / 14
0.1120

0.0624
16 / 1 / 9
0.0137

0.0732
19 / 2 / 5
0.0027

0.0785
20 / 2 / 4
0.0005

0.0905
18 / 2 / 6
0.0013

Mean-Accuracy

If in bold, then
p-value < 0.05

0.1 0.0 0.1
Mean-Difference

Fig. 6. Comparison of Gated Recurrent Unit with 128 units with Global Average Pool-
ing on the UCR and UEA for the four selected models.

with more complex aggregation methods. The additional methods could intro-
duce noise or redundancy, thereby diminishing the overall performance. This
insight is interesting for model design, as it highlights the importance of simplic-
ity and the potential drawbacks of unnecessarily complex architectures.

Additionally, in contrast to the strong results of GAP, the performance of
GRU is notably poor across all datasets. GRUs, which are typically valued for
their ability to capture sequential dependencies, do not perform well in our
specific context. This outcome might be attributed to the nature of our data or
the tasks at hand, which potentially do not benefit from the sequential processing
strengths of GRUs. This finding suggests that, while GRUs can be powerful in
certain scenarios, they may not be universally applicable, especially on datasets
like the UCR and UEA.

4 Conclusion

In this work, we address ongoing concerns within the research community regard-
ing the use of Global Average Pooling (GAP) as an aggregation method in deep

14 C. Meyer et al.

GA
P

PP
V

PP
V

~MPV MPV
~MIPV MIPV
~PP

V
GM

P
GA

P
PP

V
GA

P M
PV

GA
P G

MP
ST

AP
2

PP
V M

PV
 M

IPV
GA

P M
PV

PP

V
ST

AP
4

ST
AP

8
GA

P S
TA

P2
/4/

8

GM
P S

TM
P2

/4/
8

GR
U1

28

Reduce Method

0

100

200

300

400

500
1000
1500
2000
2500

Av
er

ag
e

Tr
ai

n
Ti

m
e

(s
)

Model Train Time
FCN
Incept
LITE
ResNet

0

1

2

3

4

5

6

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

×105
Train Time and Trainable Parameters per Aggregation Method and Model

Model Parameters
FCN
Incept
LITE
ResNet

Fig. 7. Training time (bars) and trainable parameters (points) for each aggregation
method and model.

neural networks for Time Series Classification (TSC) tasks. We present com-
prehensive experiments comparing GAP with both existing and newly adapted
aggregation techniques, evaluated on two well-established univariate and multi-
variate TSC benchmarks. The alternative aggregation methods are categorized
into three groups: pooling-based, feature-based, and learning-based approaches.

Our empirical results demonstrate that GAP remains the most accurate and
efficient aggregation strategy, as no other method achieves statistically significant
improvements over GAP in terms of both average classification performance and
computational efficiency. In addition, we observe that STAP yields promising re-
sults specifically on smaller architectures such as LITE and FCN, highlighting
its potential in resource constrained environments. This study underscores that
GAP, a non-parametric, training-free, and computationally lightweight mecha-
nism, is a fundamental component of effective deep learning models for TSC.
Notably, complex learnable aggregators, such as Recurrent Neural Networks
(RNNs), perform poorly, reinforcing the principle that in the context of TSC,
simpler methods like GAP can indeed be superior.

As a final contribution, in an effort to promote transparency and support
future work, all of our experimental results and source code are publicly avail-
able https://github.com/MSD-IRIMAS/PoolParty-4-TSC. This ensures the re-
producibility of our study and allows the community to use the raw results for
extended research.

Acknowledgments. We acknowledge the High Performance Computing Center of the
University of Strasbourg for supporting this work by providing scientific support and
access to computing resources. Part of the computing resources were funded by the
Equipex Equip@Meso project (Programme Investissements d’Avenir) and the CPER

Alternatives to Global Average Pooling for TSC 15

Alsacalcul/Big Data. This work was supported by the ANR DELEGATION project
(grant ANR-21-CE23-0014) of the French Agence Nationale de la Recherche.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bagnall, A., Dau, H.A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam,
P., Keogh, E.: The UEA multivariate time series classification archive, 2018 (Oct
2018). https://doi.org/10.48550/arXiv.1811.00075

2. Bengio, Y., Léonard, N., Courville, A.: Estimating or Propagating Gradi-
ents Through Stochastic Neurons for Conditional Computation (Aug 2013).
https://doi.org/10.48550/arXiv.1308.3432

3. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.)
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). pp. 1724–1734. Association for Computational Linguistics,
Doha, Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1179

4. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi,
S., Ratanamahatana, C.A., Keogh, E.: The UCR time series archive.
IEEE/CAA Journal of Automatica Sinica 6(6), 1293–1305 (Nov 2019).
https://doi.org/10.1109/JAS.2019.1911747

5. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C.A., Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A.,
Batista, G., Hexagon-ML: The UCR time series classification archive (Oct 2018)

6. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: Exceptionally fast
and accurate time series classification using random convolutional ker-
nels. Data Mining and Knowledge Discovery 34(5), 1454–1495 (Sep 2020).
https://doi.org/10.1007/s10618-020-00701-z

7. Dempster, A., Schmidt, D.F., Webb, G.I.: MiniRocket: A Very Fast (Almost) De-
terministic Transform for Time Series Classification. In: Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. pp. 248–257.
KDD ’21, Association for Computing Machinery, New York, NY, USA (Aug 2021).
https://doi.org/10.1145/3447548.3467231

8. Dempster, A., Tan, C.W., Miller, L., Foumani, N.M., Schmidt, D.F., Webb, G.I.:
Highly Scalable Time Series Classification for Very Large Datasets. In: Lemaire,
V., Ifrim, G., Bagnall, A., Guyet, T., Malinowski, S., Schäfer, P., Tavenard, R.
(eds.) Advanced Analytics and Learning on Temporal Data. pp. 80–95. Springer
Nature Switzerland, Cham (2025). https://doi.org/10.1007/978-3-031-77066-1_5

9. Ismail-Fawaz, A., Dempster, A., Tan, C.W., Herrmann, M., Miller, L., Schmidt,
D.F., Berretti, S., Weber, J., Devanne, M., Forestier, G., et al.: An approach to
multiple comparison benchmark evaluations that is stable under manipulation of
the comparate set. arXiv preprint arXiv:2305.11921 (2023)

10. Ismail-Fawaz, A., Devanne, M., Berretti, S., Weber, J., Forestier, G.: LITE: Light
Inception with boosTing tEchniques for Time Series Classification. In: 2023 IEEE
10th International Conference on Data Science and Advanced Analytics (DSAA).
pp. 1–10 (Oct 2023). https://doi.org/10.1109/DSAA60987.2023.10302569

16 C. Meyer et al.

11. Ismail-Fawaz, A., Devanne, M., Berretti, S., Weber, J., Forestier, G.: Look into the
LITE in deep learning for time series classification. International Journal of Data
Science and Analytics (Jan 2025). https://doi.org/10.1007/s41060-024-00708-5

12. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learn-
ing for time series classification: A review. Data Mining and Knowledge Discovery
33(4), 917–963 (Jul 2019). https://doi.org/10.1007/s10618-019-00619-1

13. Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber,
J., Webb, G.I., Idoumghar, L., Muller, P.A., Petitjean, F.: InceptionTime: Finding
AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6),
1936–1962 (Nov 2020). https://doi.org/10.1007/s10618-020-00710-y

14. Lee, D., Lee, S., Yu, H.: Learnable Dynamic Temporal Pooling for Time Series
Classification. Proceedings of the AAAI Conference on Artificial Intelligence 35(9),
8288–8296 (May 2021). https://doi.org/10.1609/aaai.v35i9.17008

15. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

16. Middlehurst, M., Bagnall, A.: Extracting Features from Random Subseries: A Hy-
brid Pipeline for Time Series Classification and Extrinsic Regression. In: Ifrim, G.,
Tavenard, R., Bagnall, A., Schaefer, P., Malinowski, S., Guyet, T., Lemaire, V.
(eds.) Advanced Analytics and Learning on Temporal Data. pp. 113–126. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-49896-1_8

17. Middlehurst, M., Schäfer, P., Bagnall, A.: Bake off redux: A review
and experimental evaluation of recent time series classification algorithms.
Data Mining and Knowledge Discovery 38(4), 1958–2031 (Jul 2024).
https://doi.org/10.1007/s10618-024-01022-1

18. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.I.: MultiRocket: Multiple
pooling operators and transformations for fast and effective time series classi-
fication. Data Mining and Knowledge Discovery 36(5), 1623–1646 (Sep 2022).
https://doi.org/10.1007/s10618-022-00844-1

19. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch
with deep neural networks: A strong baseline. In: 2017 International
Joint Conference on Neural Networks (IJCNN). pp. 1578–1585 (May 2017).
https://doi.org/10.1109/IJCNN.2017.7966039

20. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning Deep Fea-
tures for Discriminative Localization. In: 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 2921–2929. IEEE Computer Society
(Jun 2016). https://doi.org/10.1109/CVPR.2016.319

