
e-SMOTE: a train set rebalancing algorithm for
time series classification

Chuanhang Qiu1, Matthew Middlehurst2, Christopher Holder1, and Anthony
Bagnall1 (�)

1 School of Electronics and Computer Science, University of Southampton
2 School of Computer Science, University of Bradford

Abstract. Class imbalance, where one class has significantly fewer train-
ing instances than others, is a well-studied challenge in machine learn-
ing. However, research on handling class imbalance in time series clas-
sification (TSC) remains limited, and no comprehensive experimental
comparison of existing approaches has been conducted. Many standard
imbalance-handling techniques rely on similarity measures, but comput-
ing similarity between time series is more complex than for tabular data.
Elastic distances, which account for temporal misalignment, have proved
effective in many time series machine learning tasks. We explore re-
sampling strategies for imbalanced TSC and introduce e-SMOTE, an
extension of the widely used SMOTE algorithm that incorporates the
move-split-merge elastic distance metric. We construct a benchmark of
76 imbalanced TSC datasets derived from the UCR and time series ma-
chine learning (TSML) repositories to evaluate state-of-the-art (SOTA)
TSC algorithms under class imbalance. Our results show that e-SMOTE
enhances the performance of TSC classifiers that typically struggle with
imbalance and outperforms both generic and time series-specific rebal-
ancing strategies when tested on our new imbalanced dataset archive.
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1 Introduction

A classification problem with class imbalance is one where one class, the minority
class, occurs much less frequently than the majority class (if we restrict attention
to two class problems). The scenario is well studied in the traditional classifi-
cation literature. Common strategies include generating synthetic examples of
the minority class [6], downsampling the majority class [20] or employing cost
weighting to favour the minority class internally [1]. Our focus is on resampling
the minority class for time series classification (TSC).

TSC is the problem of training a model to predict a discrete target vari-
able using ordered sequences of real valued variables. It is a popular area of
research, partly due to the wide range of applications and the availability of
easy to use open source implementations of the latest algorithms [23] and an
extensive repository of example datasets [7]. Recent TSC research is reviewed
and evaluated in [25].
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Despite how frequently class imbalance occurs in real world TSC scenarios
in, for example, predicting faults in machinery, it has not been well studied in
the context of recent TSC research. One reason for this may be the lack of ex-
ample imbalanced TSC problems in the UCR archive. Despite its popularity,
there are known issues with the UCR archive [2]. One often quoted problem is
that the datasets are heavily preprocessed, and one aspect of this curation is
the creation of artificially balanced data: 33 of 42 binary datasets have been
artificially balanced and of the other nine, only one would be considered imbal-
anced (the train set for wafer has 97 instances of one class and 903 cases of the
other class). Unfortunately we cannot recover the original imbalanced problems.
Instead, we create an imbalanced version from the time series machine learn-
ing (TSML) archive to help assess the performance of TSC algorithms in this
circumstance and evaluate resampling schemes to mitigate the problems imbal-
ance creates. We create a new repository of 76 imbalanced binary classification
problems that include versions of the 30 new problems introduced to the TSML
archive recently [25]. The processing steps and the characteristics of this new
archive are described in Section 5. Many of these datasets have small train set
sizes. Because of this, our focus is on algorithms that oversample the minority
class rather than downsample the majority. It is also a contributory factor in our
not concentrating on deep learning algorithms. Instead, our research questions
are:

1. How well do the current state of the art TSC algorithms [25] handle class
imbalance?

2. Do standard rebalancing techniques improve the performance of time series
classifiers?

3. Can we improve these standard algorithms by exploiting time series specific
distance functions?

We find that there is variation in how algorithms handle imbalance, and that
standard rebalancing provides some improvement to those that handle it worse
than others. We also find that using approaches based on recent research on
elastic distances and time series clustering [16] (TSCL) in the rebalancing process
gives greater improvement than the generic algorithms. We make our imbalanced
TSC archive freely available, provide scikit-learn compatible implementations
based on the time series machine learning aeon toolkit [23]1 and give easy to
follow code examples to reproduce our results.

The remainder of this paper is structured as follows. Section 2 highlights
the relevant related research on resampling imbalanced problems. Section 3 de-
scribes elastic distance algorithms and how they can be applied within generic
resampling algorithms. The e-SMOTE resampling algorithm is described in Sec-
tion 4. Section 5 describes the new imbalanced TSC archive and how we evaluate
alternative rebalancing strategies. Section 6 presents the results of an extensive
set of experiments designed to answer the research questions above. Finally, we
conclude in Section 7 and describe the next stages of this research project.
1 https://aeon-toolkit.org/

https://aeon-toolkit.org/
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2 Background

A time series is a sequence of m ordered real valued values x =< x1, . . . , xm >.
If xi are vectors the series is called multivariate. We assume xi are scalars, i.e.
we are only considering univariate time series. A collection of time series is a set
of series denoted X = {x1, . . . ,xn}. For classification, we have two collections
of time series: a train set Xtr of size n and a test set Xte. Resampling and
model training only happens on the train set and Xte is only used in evaluation.
For simplicity, we denote the train set X in algorithmic descriptions. A target
variable y is associated with each series. We call the tuple (xi, yi) a case or
instance. For imbalanced problems, we assume yi is binary and that the number
of one class is at most 10% of the total number of cases. We call cases of the
minority class positive, and denote their set X+ of size n+. Elements of the
majority class are called negative and belong to set X− of size n−, where n+ +
n− = n and define an imbalanced problem as one where n+ ≤ n

10 .

2.1 Resampling Algorithms

Resampling the training data is a popular approach to dealing with class imbal-
ance. Perhaps the best known technique is the Synthetic Minority Over-sampling
TEchnique (SMOTE) [6]. The SMOTE algorithm is summarised in Algorithm 1.
It creates synthetic cases of the minority class based on its nearest neighbours.
We assume for simplicity in line 1 that we require an equal number of syn-
thetic cases from each positive example. It creates synthetic examples from the
k nearest neighbours of the positive class.

Algorithm 1 Synthetic Minority Over-sampling Technique: SMOTE ( X+, p, k)
Parameters: Positive cases X+, desired number of synthetic cases p, number of near-

est neighbours to consider, k
Return: Collection X++ containing X+ and p synthetic cases.
1: r ← p

|X+|
2: X++ ← X+

3: for each case x ∈ X+ do
4: Let K be the k-nearest neighbours of x in X+

5: for j = 1 to r do
6: Randomly select neighbour y from K
7: Generate a random number λ in range [0,1]
8: Compute synthetic sample xnew ← x+ λ · (x− y)
9: X++ ← X++

⋃
xnew

10: return X++

The Adaptive Synthetic Sampling (ADASYN) [15] algorithm is an extension
of SMOTE. It considers neighbours of both the positive and negative classes
and biases the sampling of neighbours towards positive cases that have more
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negative neighbours. A range of alternatives and extensions have been proposed,
including SMOTENC, SMOTEN [6], BorderlineSMOTE [14], SVMSMOTE [26],
KMeansSMOTE [11], H-SMOTE [19], HS-SMOTE [31] and EB-SMOTE [29].
SMOTE/ADASYN are designed for tabular data and based on similarity that
assumes ordering of variables is unimportant. There have been some techniques
proposed for time series specific resampling. The enhanced structure preserving
oversampling (ESPO) [5] algorithm oversamples the minority class based on
the positive case covariance structure combined with an interpolation method.
A support vector machine (SVM) with a radial basis function was used for
classification. ESPO was compared to SMOTE and ADASYN on seven UCR
datasets converted into two class problems.

Distance space oversampling [18] is an implicit approach to augment minor-
ity class. First, a suitable distance function is used to map time series from their
original feature space to distance space, resulting in a distance matrix. More
cases (called ghost points) are simulated for minority class by expanding the dis-
tance matrix only (rather than the train set). The augmented distance matrix is
converted into a kernel matrix for SVM training and prediction. The effective-
ness of ghost points was demonstrated on 17 UCR datasets and the MPEG-7
dataset.

The oversampling method to resolve the High-dimensional Imbalanced Time
series classification (OHIT) [33] involves clustering, covariance modelling and
resampling. It is evaluated on 12 UCR datasets and compared to SVM using a
range of alternative resampling algorithms.

T-SMOTE [32] uses sub-series of minority cases to generate candidates near
the class border. It uses seven UCR univariate datasets and compares perfor-
mance against alternative resampling techniques in conjunction with an LSTM
classifier. The majority of this related research is evaluated with either a nearest
neighbour or SVM classifier. Recent research has shown that the state of the
art time series classifiers, described in the next section, are on average over 10%
more accurate than these approaches.

2.2 Time Series Classification
The field of TSC has advanced significantly in the last decade, and yet the re-
search on imbalanced TSC has not reflected this. A recent bake off [25] found that
two algorithms, HIVE-COTEv2 (HC2) [24] and MultiRocket-Hydra (MRHy-
dra) [8] performed significantly better than other algorithms on the UCR datasets.
However, there is no dominant approach, and different classifiers will be more
appropriate for different problems. Performance may vary by problem type, but
also may differ by data characteristics. One of our objectives is to compare
algorithms in the presence of class imbalance. There have been hundreds of
algorithms proposed for TSC. They have been categorised by their basic rep-
resentation [25]. We take the best performing classifier of each category as our
benchmark classifiers:
Distance Based classification is based on some time series specific distance
measure between whole series. The best algorithm based on distances was Prox-
imity Forest (PF) [21]. We describe elastic distance functions in more detail in
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Section 3
Feature Based pipelines transform the time series into summary features (e.g.
series mean and variance) then apply a standard classifier. The most effective
approach was the feature pipeline called the FreshPRINCE [22].
Interval Based algorithms find summary features over multiple phase depen-
dent intervals of series. Quant [9] classifier is a pipeline that finds quantiles over
intervals structured in a hierarchy of partitions then applies a linear classifier.
Shapelet Based algorithms transform time series using shapelets. Shapelets
are subseries from the training data that are independent of the phase and
can be used to discriminate between classes of time series based on their pres-
ence or absence. The best in class was the Random Dilated Shapelet Transform
(RDST) [13].
Convolution Based approaches transform the series using randomly gener-
ated kernels/convolutions and a pooling operator in a classifier pipeline. The
MultiROCKET [30] algorithm used in cunjunction with the HYbrid Dictio-
nary–ROCKET Architecture (Hydra) [8] approach was found to be the
most effective. We call this algorithm MultiRocket Hydra or MRHydra.
Dictionary Based approaches use histograms of counts of repeating patterns
as the features for a classifier. WEASEL v2.0 (W2) [27] was the best in this
category.
Deep Learning based algorithms perform neural network based classification.
H-InceptionTime [17] won this class.
Hybrid classifiers combine two or more classifiers from the categories above.
The second version of the Hierarchical Vote Collective of Transformation En-
semble HIVE-COTEv2 (HC2) [24] combines shapelet, convolution, feature and
dictionary classifiers in a meta-ensemble. It was noted in the bake off [25] that
HC2 “does worse than MR-Hydra on imbalanced data". We explore this in more
detail and evaluate ways to improve performance.

3 Elastic SMOTE

Measuring the distance between time series is a primitive operation that can be
used for a range of tasks such as classification, clustering, extrinsic regression,
anomaly detection and retrieval. The simplest way to calculate the distance
between two time series is to use the Lp distance. SMOTE is based on using
the Euclidean distance (L2) to find neighbours. However, Lp distances take no
account of possible misalignments: small offsets can create large distances. A
family of algorithms called elastic distances compensate for possible offset by
applying a realignment algorithm. The best known of these is dynamic time
warping (DTW) which uses dynamic programming to find the optimal path
through a cost matrix. Elastic distance measures produce an alignment path,
demonstrated in Figure 1. In Figure 1(a), each time point in the red time series
aligns exactly with the corresponding time point in the blue time series. In
contrast, Figure 1(b) illustrates a more flexible alignment, where, for example,
the fourth time point in the red time series is mapped to both the third and
fourth time points in the blue time series.
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(a) A visualisation of the L2 align-
ment between the red and blue time
series.

(b) A visualisation of the DTW align-
ment between the red and blue time
series.

Fig. 1: Example of alignment between two time series when using a L2 distance
(a) and the elastic distance DTW (b). The dashed grey line shows which time
points are being compared to compute the final distance measure.

3.1 Move-Split-Merge

msm_cost(x, y, z, c) =


c if (y ≤ x ≤ z)

c if (y ≥ x ≥ z)

c+min

{
|x− y|
|x− z|

otherwise
(1)

CMmsm(i, j) = min


CMmsm(i− 1, j − 1) + |ai − bj |
CMmsm(i− 1, j) +msm_cost(ai, ai−1, bj , c)

CMmsm(i, j − 1) +msm_cost(bj , ai, bj−1, c)

(2)

An alternative family of distance functions are based on the concept of edit
distance. An edit distance, such as MSM, considers a diagonal move as a match,
a vertical move as an insertion and an horizontal move as a deletion. The
move/match operation in MSM uses the absolute pointwise difference rather
than the squared Euclidean distance used by DTW. The cost of the split and
merge operations are given by cost function msm_cost (Equation 1). The cost
of splitting and merging values depends on the value itself and adjacent values.
The definition of MSM and the resulting distance are shown in Equations 1 and 2
MSM satisfies triangular inequality and is a metric (see [28] for a proof). We use
a constant value of c = 1 in all our experiments.
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Algorithm 2 Elastic Synthetic Minority Over-sampling Technique
e-SMOTE ( X+, p, k, d, f)
Parameters: Positive cases X+, desired number of synthetic cases p, number of near-

est neighbours to consider k, distance function d, alignment function f
Return: Collection X++ containing X+ and p synthetic cases.
1: r ← p

|X+|
2: X++ ← X+

3: for each case x ∈ X+ do
4: Let K be the k-nearest neighbours of x in X+ using d (e.g., MSM)
5: for j = 1 to r do
6: Randomly select neighbour y from K
7: Find alignment path P = {(p1, q1), (p1, q2), (p2, q2), . . . } between x and y

using f
8: Initialize δ as a zero vector of the same length as x
9: for k = 1 to case length l do

10: Randomly select an index q∗ from the tuples in P where p = pk
11: Compute alignment-based perturbation:

δk = xpk − yq∗

12: Generate a random number λ in range [0,1]
13: Compute synthetic sample:

xnew ← x+ λ · δ

14: X++ ← X++

⋃
xnew

15: return X++

4 e-SMOTE Resampling Algorithm

The elastic SMOTE (e-SMOTE) algorithm employs elastic distances to make
more discriminatory synthetic cases. There are two stages of SMOTE (Algo-
rithm 1) where elastic distances may improve the algorithm: finding the neigh-
bours (line 4) and generating new synthetic examples (line 8). We implement
these changes in the e-SMOTE algorithm, described in Algorithm 2. Firstly, we
generalise finding neighbours to use any distance, set to MSM in all our experi-
ments. Secondly, we use the alignment path between the series to create a new
case. The alignment between two series can be found directly from the distance
calculation, but for clarity we separate this into two functions, d to find the dis-
tance and f to find the path. The path P is a series of pairs of indexes specifying
the alignment that gives the specific distance. e-SMOTE randomly chooses an
aligned value for each point (line 10), then perturbs the instance based on dis-
tance from the aligned pair. e-SMOTE is designed to make the minimal changes
to SMOTE so that we can assess the benefit of using an elastic distance.
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5 Methodology

To evaluate algorithms in the face of imbalance we need to specify what we mean
by imbalance, find imbalanced datasets for evaluation and define what metrics
and tests of difference we use in the assessment.

We restrict our attention to binary classification problems, and define imbal-
ance as the situation where the least commonly occuring class label, referred to
as the minority class, represents 10% or less of the cases in the training data. Real
world data is often much more imbalanced than this. The decision to use 10% is
taken through necessity: it allows us to use a reasonable number of datasets and
derive meaningful performance metrics to perform tests of significant differences.

To compare algorithms for imbalanced TSC scenarios, we reformulated the
UCR Time Series Classification Archive [7] and the subsequent enhancement
TSML archive [25] into binary classification tasks. We assigned the class with
the fewest samples as the minority class. In situations where multiple classes had
equal sample sizes, we arbitrarily selected the last class as the minority class,
assigning the remaining classes to the majority class. To introduce the desired
class imbalance, we randomly removed samples from minority class set of the
binary-class datasets, ensuring a majority-to-minority ratio of 9:1.

We use the default train/test splits to retain a link to general TSC research.
However, many of the UCR datasets have small train set sizes. Making these
problems imbalanced makes the train sets even smaller, and often results in a
very small number of positive cases. Because of this, we restrict our attention to
problems where rebalancing leaves us with at least 10 positive cases, i.e. a train
set size of at least 100 cases. The details of our imbalanced data is shown on the
accompanying website, where they can be downloaded in standard format 2.

Our primary performance metrics are classification accuracy to measure gen-
eral performance and balanced accuracy, to assess performance in the presence
of imbalance. Accuracy of over 90% and balanced accuracy over 50% implies
performance better than predicting the majority class. The quality of the prob-
ability estimates is measured with the log loss. The ability to rank predictions is
estimated by the area under the receiver operator characteristic curve (AUROC).
We use sensitivity and specificity to describe performance and the minority and
majority class, and the F1-score is used to measure a model’s balance between
false positives and false negatives.

For reproducibility, each classifier with random number generation is seeded
to 0. We compare multiple classifiers over multiple datasets using an adaptation
of the critical difference diagram [10]. The post-hoc Nemenyi test is replaced
with a comparison of all classifiers using pairwise Wilcoxon signed-rank tests,
and cliques formed using the Holm correction as recommended by [4].

The classifiers we use in experiments are configured with their default pa-
rameters, described on the website and in the appendix.

2 https://github.com/LinGinQiu/AALTD2025imbalance

https://github.com/LinGinQiu/AALTD2025imbalance
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6 Results

In all experiments we use the following abreviations: 1-NN with DTW is DTW;
Rotation Forest isRotF; Proximity Forest is PF, Weasel 2.0 is W2, H-InceptionTime
is H-IT; HIVE-COTEv2.0 is HC2; and is MultiRocket-Hydra is MRHydra.

6.1 TSC Performance on Imbalanced Data

Our first experiment is to investigate the relative performance of SOTA algo-
rithms described on the new imbalanced TSC archive. Figure 2 shows the relative
ranked performance of ten classifiers on 76 imbalanced datasets. Rotation forest
(RotF) is not a time series classifier, but is included for context since it is known
to perform well on this type of problem [3].

12345678910

MRHydra4.0743

HC24.3851

RDST4.6486

Quant4.7703

H-IT5.1689W2 5.1892
FP 5.3108
PF 6.1419

RotF 7.0541
DTW 8.2568

12345678910

MRHydra3.8108

H-IT4.6689

RDST4.9932

HC25.1892

Quant5.1959FP 5.4595
W2 5.5608

DTW 6.1284
PF 6.4392

RotF 7.5541

Accuracy Balanced Accuracy

12345678910

MRHydra3.7095

H-IT4.3108

RDST5.1419

DTW5.3176

HC25.4865Quant 5.5203
FP 5.5676

W2 5.5811
PF 6.5473

RotF 7.8176

12345678910

HC24.1081

Quant4.4122

RDST4.9662

FP5.0473

RotF5.1149W2 5.1622
PF 5.2500

MRHydra 5.7568
H-IT 6.1824

DTW 9.0000

Sensitivity Specificity

Fig. 2: Relative ranked performance of eight classifiers on the imbalanced classi-
fication problems.

There is a top clique of four classifiers for accuracy, with MRHydra and
HC2 performing best. This reflects the ordering of algorithms on the standard
archive. Table 1 shows the average accuracy, balanced accuracy, area under the
ROC curve (AUROC), log loss, sensitivity and specificity for all classifiers. Fig 2
and Table 1 show that HC2 has the highest average accuracy, AUROC, LogLoss
and Specificity, whereas MRHydra has the highest Balanced Accuracy and Sen-
sitivity.

We quantify the impact of making the data imbalanced by comparing bal-
anced accuracy performance of HC2 and MRHydra on the 14 two class problems
from the original archive that we have rebalanced. Table 2 shows the balanced
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Table 1: Comparison of classifiers based on multiple performance metrics.
DTW FP H-IT HC2 MRH PF Quant RDST RotF W2

Accuracy 0.9033 0.9371 0.9227 0.9411 0.9403 0.9313 0.9385 0.9395 0.9304 0.9366
Bal. Acc. 0.7366 0.7563 0.7675 0.7554 0.7909 0.7275 0.7532 0.7621 0.6837 0.7486
AUROC 0.7366 0.9025 0.8909 0.9066 0.7909 0.8776 0.9055 0.7621 0.8671 0.7486
LogLoss 3.4848 0.1864 0.5448 0.1682 2.1534 0.2760 0.1896 2.1806 0.2290 2.2843
Sensitivity 0.5292 0.5315 0.5739 0.5243 0.6050 0.4741 0.5226 0.5415 0.3767 0.5146
Specificity 0.9441 0.9811 0.9610 0.9864 0.9767 0.9809 0.9838 0.9827 0.9907 0.9825

accuracy of both HC2 and MRHydra on these data before and after removing
training cases. This is useful because it provides an upper bound on performance:
it is very unlikely a classifier will perform better on rebalanced data than the
original. On average, the balanced accuracy is about 20% less on the imbalanced
data for both algorithms. Table 2 highlights two other characteristics of the data.
Firstly, both classifiers perform worse than 50% for FordB and SemgHandGen-
derCh2. HC2 on FordB does not predict a single positive case correctly. Other
classifiers have similar difficulty with these data. This suggests imbalancing has
made these problems impossible. Secondly and conversely, Wafer seems to be
a trivial problem both before and after imbalancing. These characteristics are
worth considering in detailed analysis of results, but to avoid seemingly cherry
picking, we continue experiments with the same datasets. These results set the

Table 2: Balanced accuracy before and after making data imbalanced for prob-
lems that were originally two class problems.
Dataset HC2 imb diff MRHydra imb diff
Computers 76.00% 60.74% -15.26% 76.80% 63.78% -13.02%
DistalPhalanxOutlineCorrect 75.03% 61.45% -13.58% 77.45% 58.20% -19.25%
FordA 95.61% 79.19% -16.42% 95.69% 85.85% -9.84%
FordB 83.71% 31.78% -51.93% 83.45% 27.02% -56.43%
HandOutlines 92.72% 84.40% -8.32% 94.27% 88.04% -6.23%
MiddlePhalanxOutlineCorrect 83.98% 58.33% -25.65% 83.78% 63.59% -20.19%
PhalangesOutlinesCorrect 80.34% 59.39% -20.95% 81.02% 64.56% -16.46%
PowerCons 98.33% 75.00% -23.33% 98.33% 80.00% -18.33%
ProximalPhalanxOutlineCorrect 85.12% 79.55% -5.57% 88.13% 81.57% -6.56%
SemgHandGenderCh2 95.62% 40.90% -54.72% 94.74% 33.21% -61.53%
Strawberry 97.98% 95.94% -2.04% 97.22% 95.31% -1.91%
Wafer 100.00% 100.00% 0.00% 99.85% 99.84% -0.01%
WormsTwoClass 80.68% 62.50% -18.18% 77.65% 75.00% -2.65%
Yoga 92.62% 57.55% -35.07% 92.78% 65.20% -27.58%
Average 88.41% 67.62% -20.79% 88.65% 70.08% -18.57%

Table 3: Performance comparison of HC2 and MRHydra methods before and
after rebalancing.
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basis for assessing whether rebalancing the train set by creating synthetic sam-
ples of the minority class improves performance.

6.2 Do standard rebalancing techniques improve performance?

Ideally, we would hope that rebalancing allows the classifier to achieve more
correct positive test cases without any loss of accuracy in negative cases. This
would lead to an improvement in both overall accuracy and balanced accuracy.
However, given the small number of positive test cases, a significant improvement
in accuracy is unlikely. Instead, we primarily aim for a substantial increase in
balanced accuracy. This can also be framed as an increase in sensitivity at the
cost of specificity.

We ran both SMOTE and ADASYN with the same configuration, using k = 3
neighbours due to the small training set sizes. The newly transformed training
files are available on the associated website3. Table 4 shows the relative per-
formance of six TSC algorithms when trained on the imbalanced data and on
data rebalanced with SMOTE. The differences are averaged over all datasets.
The pattern is similar for all classifiers. They are less accurate overall, but have
better balanced accuracy. This is reflected in increased sensitivity at the cost
of reduced specificity. The level of this effect varies significantly. HC2 has the
biggest drop in accuracy and the biggest rise in balanced accuracy. Conversely,
the accuracy and balanced accuracy of MRHydra change much less. A similar
pattern is observed when rebalancing with ADASYN.

Table 4: Difference in test data performance between imbalanced data and train
data rebalanced with SMOTE.

Accuracy Balanced Acc Sensitivity Specificity
HC2 -0.73% 3.24% 8.18% -1.70%
MRHydra -0.20% 1.21% 2.97% -0.55%
RDST -0.31% 2.14% 5.18% -0.91%
H-IT -0.53% 3.13% 7.72% -1.45%
Quant -0.94% 2.69% 7.20% -1.83%
RotF -0.22% 2.12% 5.03% -0.80%

HC2 and MRHydra are the SOTA algorithms and demonstrate the extremes
of change when rebalanced with SMOTE. We compare performance on the im-
balanced data (IMB) against data rebalanced using SMOTE and ADASYN. We
also include data rebalanced through simple random perturbation of the minority
cases (RAND). Figure 3 shows that all three forms of rebalancing improve both
classifiers. For MRHydra, there is no difference among the three rebalancing
techniques. However, with HC2 both ADASYN and SMOTE are significantly
better than RAND. There is also no significant difference between ADASYN
and SMOTE in either case. We conclude that whilst rebalancing helps, there is
3 https://github.com/LinGinQiu/AALTD2025imbalance

https://github.com/LinGinQiu/AALTD2025imbalance
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1234

ADASYN2.0956

SMOTE2.1029RAND 2.6618
IMB 3.1397

1234

RAND2.3836

ADASYN2.3904SMOTE 2.3904
IMB 2.8356

HC2 MRHydra

Fig. 3: Relative ranked performance in terms of balanced accuracy with imbal-
anced data (IMB) and SMOTE, ADASYN and random rebalancing (RAND).

greater room for improvement for HC2 and that focussing on SMOTE is unlikely
to make a difference to our overall conclusions.

6.3 e-SMOTE evaluation

We compare e-SMOTE, described in Section 3, based on the performance of the
HC2 classifier after different rebalancing operations. We compare to raw imbal-
anced data (IMB), randomly perturbed data (RAND), SMOTE, T-SMOTE [32]
and OHIT [33]. The OHIT implementation is adapted from the Matlab ver-
sion provided by the papers author 4. We could not find an implementation
of T-SMOTE and the authors did not reply to our enquiries. Hence, we have
reimplemented T-SMOTE based on the description in the paper.

Both algorithms are parameterised as described in the literature. OHIT
method has several key hyperparameters. Let n∗ be the number minority sam-
ples. k, the number of nearest neighbours in the Shared Nearest Neighbour sim-
ilarity calculation, is set as: k = int(⌈

√
n∗ × 1.25⌉). κ, the nearest neighbour

parameter used for defining the density ratio, is set as: κ = int(⌈
√
n∗⌉). drT, the

threshold of the density ratio, is set to 0.9. In the T-SMOTE method, we reim-
plement the spy-based approach to initialize hyperparameters. The spy sample
size is set to 0.15, and spy classifier f , which generates the prediction score, is
chosen as the aeon K-Neighbours Time Series Classifier. As for the fitting time,
the time required for rebalancing is only a tiny fraction of the total, and our
experiments show that all SMOTE-related methods take less than 1% of the
classifier’s fitting time.

Figure 4 shows the ranks for accuracy and balanced accuracy for six rebal-
ancing algorithms. e-SMOTE is top ranked for both and is significantly better
than all but SMOTE for balanced accuracy. Figure 5 shows the scatter plot of e-
SMOTE vs SMOTE for accuracy. e-SMOTE is significantly better than SMOTE
with a pairwise test without the multiple correction test used in Figure 4.

Table 5 summarises the performance of HC2 on the imbalanced data and
with five resampling techniques. e-SMOTE achieves the best balance between
sensitivity and specificity, as demonstrated by the fact it has the highest average
rank and value for F1 score.
4 https://github.com/zhutuanfei/OHIT

https://github.com/zhutuanfei/OHIT
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Fig. 4: Relative performance of HC2 classifier using different resampling tech-
niques.

Table 5: Summary performance of HC2 with different resampling techniques.
IMB OHIT RAND SMOTE T-SMOTE e-SMOTE

Accuracy 94.41% 94.07% 94.27% 94.04% 94.48% 94.37%
BalAcc 75.23% 75.94% 76.59% 78.59% 75.47% 78.63%
Sens 51.39% 53.40% 54.62% 59.37% 51.83% 59.07%
Spec 99.08% 98.48% 98.57% 97.80% 99.11% 98.20%
F1 57.37% 58.52% 59.79% 63.04% 58.32% 63.57%

7 Conclusions

Our first objective is to establish TSC with imbalance on a sound footing through
a reproducible experimental setting. We have created an archive of 76 imbalanced
TSC problems derived from the TSML archive. These are all binary classification
problems with the minority class making up at most 10% of the data. We evaluate
the SOTA classifiers on this archive and demonstrated that the top performing
algorithms, HIVE-COTEV2 (HC2) [24] and MultiRocket-Hydra (MRHydra) [8]
perform as expected: HC2 performs relative worse on imbalanced problems, but
is better if probabilistic estimates are required. We find rebalancing improves
the performance of both classifiers. However, random perturbation is as good as
SMOTE and ADASYN for MRHydra, and the improvement is more pronounced
with HC2. We propose e-SMOTE, an adaptation of SMOTE that uses the elastic
distance metric Move-Split-Merge [28]. We compare e-SMOTE to SMOTE and
two algorithms proposed in the literature. We show e-SMOTE is significantly
better than the published alternatives and gives an overall improvement for
HC2 compared to SMOTE.

The improvement is slight and there is room for improvement. There is po-
tential for using a range of elastic distances in e-SMOTE to find matches, and
we could use one of the many SMOTE variants, although preliminary results
indicate they do offer any improvement. Ultimately, distance based rebalancing
may not be the best approach for TSC with class imbalance. In future work
we hope to investigate alternative approaches to class imbalance. The topic is
closely related to the more general field of generating synthetic samples through
deep learning generative models or a time series specific technique (e.g. [12]).
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Fig. 5: Accuracy scatter plot for e-SMOTE vs SMOTE.

These algorithms usually address the problem of small train set size rather than
data imbalance. However, it is natural to assess their suitability for imbalance.

Another area of enquiry is to see if we can explain the differences in classifi-
cation performance in terms of algorithm design. HC2 is a hierarchical ensemble,
and investigation into the relative performance of components may indicate al-
ternative designs to allow the classifier to automatically internally compensate
for imbalance, in particular with regard to the probability weighting mechanism.

Finally, we will expand the archive to encompass multi-class classification
tasks, multivariate datasets, and problems with larger data volumes. If the train
sets are large, then downsampling the majority class may be a better approach.
Reproducibility We are committed to the FAIR (Findable, Accessible, Inter-
operable, and Reusable) principles in research. We will contribute our imple-
mentations to aeon. In the interim, implementations of the algorithms used and
the new imbalanced archive can be found on an anonymous GitHub5.
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