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Abstract. High-resolution animal telemetry data, increasingly available
through GPS technologies, has proved very valuable to study animal be-
havior in relation to their environment. A key open question is: How can
cognitive measurements from laboratory studies be meaningfully related
to behavioral patterns observed in the wild? In this study, we analyze
the movements of juvenile Herring Gulls tracked in Belgium from 2022
to 2025. We introduce a simple yet effective method inspired by spectral
clustering to extract informative, individual-level behavioral features. We
show that the eigenvalues of the Laplacian have a natural interpretation
and can be use to assess the difference in movement patterns between in-
dividuals. Moreover, we introduce a method to quantify revisit patterns,
which provides an additional view on similarities between individuals.

1 Introduction

Enabled by the recent advances in GPS technology, high-resolution animal teleme-
try data has become increasingly available in the past decades [3]. Analyzing this
data has critical applications in species conservation and environmental preser-
vation [8,7,9,11,12]. As a result, behavioral ecologists have increasingly relied on
statistical analysis techniques such as HMMs, spatio-temporal point processes
and differential equations, as surveyed in [8], with the goal of extracting both
individual and population-level characteristic quantities.

Telemetry data collected using currently available GPS devices presents sev-
eral challenges. For example, solar-powered GPS units depend on light exposure,
which can result in irregularly sampled location data over time. Moreover, the
number of spatio-temporal measurements may vary greatly accross individuals.

In this paper, we focus on a specific sub-task: extracting features from animal
trajectories such that the similarity between these features reflects underlying
cognitive or behavioral similarities between individuals. We argue that an ef-
fective feature extractor should satisfy three key properties: (1) Invariance to
trajectory transformations that do not carry behavioral meaning, (2) Scalabil-
ity to large volumes of high-resolution trajectory data, and (3) Direct inter-
pretability in terms of behavioral patterns.

Our work uses well established spectral clustering methodology [1,4,10,6] to a
resampled version of the trajectories in order to extract features satisfying these
properties.
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2 Data

We consider 157 juvenile herring gulls (Larus argentatus) tracked in Belgium,
with data collected from 2022 to 2025. Each bird’s trajectory is represented by
a set of observations (xi, yi, ti), where (xi, yi) are the spatial coordinates and
ti is the timestamp of the i-th observation. Note that due to the nature of the
tracking technology, the observations are irregularly sampled, meaning that the
time intervals between observations can vary significantly. In Appendix A, we
provide more specific information about the distribution of time gaps between
observations for each individual.

(a) H911142 (b) H912505 (c) H911975 (d) H911566

Fig. 1: Trajectories of four juvenile herring gulls nearby coastal Belgium.

Objective The goal of this study is to analyze the movement patterns of birds
by extracting features from their trajectories that can be linked to cognitive
performance measured in controlled laboratory settings. The general strategy
is to identify individual-level features that can discriminate between different
"types" of birds, where type is defined by characteristics such as cognitive traits.

Strategy Our general strategy is to build features which are invariant to certain
transformations of the trajectories that are not behaviorally meaningful. These
include for instance differences in the number of recorded measurements and
rigid transformations such as rotations and translations. In ecological terms,
we aim to identify patterns of movement that may indicate different behavioral
states, such as foraging, nesting, or migration. We hereby describe how these
different states are expected to manifest in the data.

– Foraging: Birds may exhibit frequent changes in location, with short-term
movements between feeding sites.

– Nesting: Birds may show more localized movements, with longer periods of
inactivity or short movements around a fixed location.

– Migration: Birds may display long-distance movements with fewer stops,
indicating a more directed travel pattern.
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3 Method

Our proposed method consists in three main steps: (1) smoothing/averaging the
trajectories, resulting in a discrete trajectory constructed from the irregularly
sampled observations, (2) constructing for each bird a similarity matrix S which
represents the similarity of timestamps of the discrete trajectories, and (3) a
spectral analysis step where the spectral properties of the similarity matrix are
computed and linked to behavioral patterns of the birds.

3.1 Trajectory Resampling

We start with a set of observations (xm, ym, tm) for each bird, where zm
∆
=

(xm, ym) are the spatial coordinates and tm is the timestamp of the m-th ob-
servation. We construct a discrete trajectory by averaging the observations over
a fixed time interval (in our case we use days Ii), resulting in a set of discrete
points z̄i =

(
xi, yi

)
for i = 1, . . . , N , where N is the number of days in the

trajectory.

z̄i =
1

|Ii|
∑
m

tm∈Ii

zm

In case of missing data, i.e. if no observation is observed for one or several
days, linear interpolation is used to impute the missing coordinate values. The
choice of granularity should reflect the resolution at which we expect behaviorally
discriminating features to emerge from the trajectories.

3.2 Similarity Matrix Construction

We construct a similarity matrix S(k) for each bird k based on its discrete tra-
jectory, following two steps. In the first step, we compute the pairwise Euclidean
distances ∆

(k)
ij =

∥∥∥z̄(k)i − z̄
(k)
j

∥∥∥ between the bird’s locations on different days,

where z̄
(k)
i denotes the location of bird k on day i. Next, we apply the so-called

heat kernel [1] to transform these distances into similarities:

S
(k)
ij = exp

−
∆

(k)2

ij

σ2
k

 ,

where σk is a scale parameter that may be bird-specific or shared across
individuals. The resulting similarity matrix S(k) ∈ RN(k)×N(k)

captures the pair-
wise similarity between days based on the spatial proximity of the measurements
made on different days, where N (k) is the number of days with available obser-
vations for bird k. We choose σk to be the median distance between all pairs
of days for bird k, effectively transforming all pairwise distances into a common
scale of day-to-day similarity that can be compared across birds.

Figure 2 shows the day-to-day distance and corresponding similarity matrices
for two values of σk. Smaller σk values emphasize local structure by assigning low
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(a) Distance Matrix (b) Heat Kernel σ = 0.01 (c) Heat Kernel σ = 0.1

Fig. 2: Similarity matrix with different temperature parameters for individual
H911566 which is observed for a total of 372 days.

similarity to distant days, while larger values capture more global patterns by
smoothing over time. The resulting distance/similarity matrices are inherently
invariant to translation and rotation of the birds, but still reveal interpretable
behavioral structures in the trajectories.

First these matrices are symmetric and have zeros along the diagonal (as the
distance between a day and itself is zero). Moreover, diagonal blocks of near-
zero values indicate that the bird remained in a single location for a sustained
period—behavior that may correspond to nesting. Off-diagonal regions with
similarly low values suggest that the bird revisited a previous location, as in-
dicated by two time intervals during which the bird was spatially co-located,
signaling a revisit. Conversely, diagonal patches with consistently high distance
values reflect more dynamic behavior over the associated interval. Smaller such
patches containing both low and large similarity values may typically be associ-
ated with foraging or explorative behavior, where the bird switches between
a dynamic mode and static behavioral mode. In contrast, larger low similarity
blocks indicate more consistent movement and are generally characteristic of
migration.

3.3 Spectral Analysis

In order to automatically extract the structural patterns discussed above in a
way that is comparable across individuals, we apply spectral clustering via the
eigendecomposition of the normalized Laplacian matrix L, following [10,6,4]. For
an individual k (suppressing the superscript for clarity), we define the diagonal
degree matrix D with entries Dii =

∑
j Sij , representing how typical or fre-

quently visited a location is on day i. Low values of Dii indicate exploratory
behavior, while high values reflect revisits or prolonged stays.

While the unnormalized Laplacian L(un) = D − S is a natural starting
point, its eigenvalues depend on trajectory length, making it unsuitable for cross-
individual comparisons. We therefore use the normalized Laplacian, defined as

L = I −D−1/2SD−1/2.
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(a) H908641: relative to all the birds in the study (light gray line),
this bird was relatively static overall, hence all the values in the kernel
metrics are close to 1, and no clear structure emerges in the Laplacian
spectrum. All the non-zero eigenvalues are close to 1
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(b) H911140: This bird in contrast clearly visits several locations, with
two main modes: a static mode between 2022-08-19 and 2022-12-12,
then a more dynamic mode (leading to several high index eigenval-
ues) between 2022-12-12 and 2024-06-03, then another static mode
between 2023-06-03 and 2024-09-27. This richer structure is reflected
in the Normalized Laplacian spectrum (on the right), which shows
several zero eigenvalues indicating two main sites, and various inter-
mediate eigenvalues, indicating a more complex structure at multiple
scale in the trajectory.

Fig. 3: Laplacian eigenvalues and raw kernel matrix for two birds. In the right-
hand plot, the spectra of all individuals are shown as light gray lines, with the
spectrum of the selected individual highlighted in black.
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We apply the methods described above in order to visualize the spectral
properties of each individual bird relative to the others. On Figure 3 we show
the Laplacian spectrum and the raw kernel matrix for two birds, H908641 and
H911140. The results show that the spectrum (i.e. set of eigenvalues) of the
Laplacian matrix is a normalized indicator of how clustered the trajectory is.
Notably, it reveals the number of stay points (i.e. locations where the bird stayed
for a long time), which is the number of connected components of the similarity
graph. As we will see later, the eigenvectors of the Laplacian matrix can be used
to cluster the days into such sites, and to quantify revisitation patterns.

Spatio-Temporal Segmentation via Clustering As described in [5,10],
while the eigenvalues of the normalized Laplacian L reflect the connectivity of
the similarity graph S, its eigenvectors can be used for clustering. Specifically,
we embed each day into a d-dimensional Euclidean space using the first d eigen-
vectors ϕ1, . . . , ϕd, forming the matrix Φ = [ϕ1 | . . . |ϕd] ∈ RN×d, where each
row corresponds to a day. We then apply k-means clustering to the rows of Φ,
assigning each day to one of k clusters. The number of clusters k can be chosen
based on prior knowledge or heuristics such as the elbow method or silhouette
score, resulting in a sequence of cluster labels l1, . . . , lN .

3.4 Quantifying Revisitation Patterns

Revisitation patterns are a well-established source of insights into population
ecology [2]. Notably, they also capture key cognitive traits, such as spatial mem-
ory. Building on the segmentation derived from the previous clustering step,
we introduce a novel method for quantifying revisitation patterns in individual
movement trajectories. Recall that the clustering step produces a sequence of
state labels l1, . . . , lN , where each label li represents the cluster assigned to day
i. We now provide a general definition of a revisitation pattern:

Definition 1 (Reoccurrence). Consider a sequence of state labels l1, . . . , lN .
A reoccurrence is said to occur if there exist indices j, k, l with j < k < l such
that

lj = ll and lk ̸= lj .

In other words, the individual returns to a previously visited state after having
visited at least one different state in between.

Following this definition, the sequence of state label may be factorized as a
set of patches

l1, . . . , lN = l1, . . . , lj︸ ︷︷ ︸
patch 1

, lj+1, . . . , lk︸ ︷︷ ︸
patch 2

, lk+1, . . . , ll︸ ︷︷ ︸
patch 3

, . . .

where each patch corresponds to a contiguous subsequence of the state labels
where the state remains constant. Based on this definition, we can define two ad-
ditional quantities that characterize the reoccurrence behavior of the individual,
namely the gap and the dwell time:
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Definition 2 (Gap of a Reoccurrence). Given a sequence of state labels
l1, . . . , lN , consider indices j and l with j < l such that lj = ll. The gap of this
reoccurrence is defined as the number of steps between these indices, i.e.,

Gap = l − j − 1,

provided that for each intermediate index k (with j < k < l) we have lk ̸= lj.

Definition 3 (Dwell Time). For any occurrence of a state lj, the dwell time
is defined as the number of consecutive steps during which the individual remains
in the state lj. Formally, if d is the largest non-negative integer such that

lj+1 = lj+2 = · · · = lj+d = lj ,

(with j + d = N or lj+d+1 ̸= lj), then d is the dwell time associated with the
occurrence at index j.

B A A A C C A A D

Gap = 2

Dwell = 3 Dwell = 2

Fig. 4: Illustration of a reoccurrence of state A, showing the gap and dwell time.

These definitions allow to quantify revisit behavior in a way that is invariant
to translations and rotations of the trajectory. We show the revisit statistics
for bird H911140 in Figure 5a. To compare individuals based on their revisit
patterns, we proceed as follows. First, we identify all revisit patterns for each
bird. Then, we compute the magnitude of each revisit simply by summing the
gap and dwell time:magnitude = gap+dwell time. For each individual, we select
the revisit pattern with the highest magnitude and use its gap and dwell time to
represent that individual. This approach yields a two-dimensional representation
of revisit magnitude for each bird, where the x-axis corresponds to the maximum
gap length and the y-axis corresponds to the maximum dwell time.

The resulting maximum dwell time and maximum revisit gap for each bird
are shown in Figure 6. The scatter plot reveals that, for individuals tracked over
a large number of days, the maximum gap length and maximum dwell time tend
to align along a circular pattern. Points in the top right of the plot correspond
to individuals that revisited a location after a long absence and remained there
for an extended period. This pattern may suggest that these individuals possess
strong spatial memory.
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(a) Cluster Label for each day (b) Revisit Gap Length vs. Dwell Time

Fig. 5: Cluster label sequence and revisit statistics for bird H911140. The right
panel shows gap vs. dwell time for the bird’s revisits to different cluster labels.
Notably, the top-right orange patch (label 1) represents a revisit with a long
dwell time but a shorter gap, indicating a return to a frequently used, more
stable location. In contrast, the blue patch on the bottom right (corresponding
to the top right blue point on the scatter plot) corresponds to a revisit with a
longer gap but shorter dwell time.
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Fig. 6: Scatter plot of maximum revisits vs maximum dwell time for all bird.
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4 Conclusion and Future Work

In this work, we have presented a simple method inspired by spectral clustering
to extract behavioral features from bird trajectories. These features are invari-
ant to the number of observations, scalable to large datasets, and directly inter-
pretable in terms of behavioral patterns. We demonstrated that spectral cluster-
ing—through its use of eigenvalues and the resulting sequence of labels—offers
a simple yet principled approach to deriving interpretable features. Future work
will explore applications to other animal movement datasets and compare the
extracted behavioral features with known cognitive attributes measured in lab-
oratory settings. Additionally, a crucial next step is to quantitatively and qual-
itatively compare our method with other trajectory segmentation techniques,
such as the widely used (H)DBSCAN, as well as with existing feature extraction
methods, to validate the effectiveness of our approach.
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Fig. 7: Distribution of the maximum gap between two consecutive location ob-
servations.
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