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Abstract. Time series forecasting poses significant challenges in non-
stationary environments where underlying patterns evolve over time. In
this work, we propose a novel framework that enhances deep neural
network (DNN) performance by leveraging specialized model adaptation
and selection. Initially, a base DNN is trained offline on historical time
series data. A reserved validation subset is then segmented to extract and
cluster the most dominant patterns within the series, thereby identifying
distinct regimes. For each identified cluster, the base DNN is fine-tuned
to produce a specialized version that captures unique pattern characteris-
tics. At inference, the most recent input is matched against the cluster
centroids, and the corresponding fine-tuned version is deployed based
on the closest similarity measure. Additionally, our approach integrates
a concept drift detection mechanism to identify and adapt to emerging
patterns caused by non-stationary behavior. The proposed framework is
generalizable across various DNN architectures and has demonstrated sig-
nificant performance gains on both traditional DNNs and recent advanced
architectures implemented in the GluonTS library.

Keywords: Deep Time Series Forecasting - Fine-Tuning - GluonTS -
Concept-drift.

1 Introduction

Time series forecasting is a fundamental task that underpins a wide range
of real-world applications, including finance, energy management, healthcare,
and supply chain optimization [6,2,14,17]. Accurate and reliable forecasts are
essential for enabling informed decision-making, optimizing resource allocation,
and ensuring the smooth operation of complex systems. However, delivering
consistent predictive accuracy in practice remains a big challenge due to the
inherent complexity, non-stationarity, and dynamic behavior of temporal data
[17,12,13].

A major challenge in time series forecasting is the lack of a single, universally
effective model that can generalize across different application domains, datasets,
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and temporal horizons [2, 3]. Forecasting models that excel under specific con-
ditions or during stable periods often fail to sustain their performance when
confronted with evolving patterns and distributional shifts—phenomena that are
common in real-world time series data [14, 17, 16]. These shifts, often referred to
as concept drift, can cause a substantial deterioration in predictive accuracy if
not properly detected and mitigated [17].

In addition to global distributional changes, time series data often exhibit
localized variations and recurring patterns that can significantly affect model
performance [14,15,12]. Different forecasting models may specialize in capturing
distinct types of temporal behavior, such as trends, seasonality, or abrupt transi-
tions. Consequently, a model that performs well in one segment of the data may
underperform in another due to its inability to adapt to localized characteristics
[14]. This highlights the critical need for adaptive forecasting frameworks that can
(i) detect and respond to concept drift, (ii) capture local temporal dynamics, and
(iii) leverage model specialization to improve robustness and predictive accuracy.

Deep neural networks (DNNs) have recently demonstrated significant success
in time series forecasting tasks due to their ability to model complex nonlinear
dependencies and capture long-range temporal patterns [9,4]. Advanced archi-
tectures, such as Temporal Fusion Transformers (TFT) [7], DeepAR [18], and
MQ-CNN [20], implemented in libraries like GluonTS, offer scalable and flexi-
ble solutions for probabilistic forecasting. Despite their impressive performance,
DNN-based models often operate under the assumption of stationarity or require
frequent retraining to adapt to new data distributions. Furthermore, these models
typically learn a global mapping from inputs to outputs, which can hinder their
ability to generalize across distinct regimes or localized patterns within the same
time series. Moreover, while DNNs excel at capturing complex structures when
abundant training data is available, their generalization capability can be com-
promised in the presence of concept drift and heterogeneous data segments [14,
15]. Static DNN models lack inherent mechanisms to adapt rapidly to evolving
temporal patterns, leading to performance degradation over time unless retrained
or explicitly augmented with adaptive components [15].

In this paper, we propose a novel adaptive pattern-based framework for time
series forecasting that addresses the limitations of conventional DNN approaches.
Our framework leverages the notion of pattern specialization by clustering his-
torical time series data to identify dominant temporal regimes. For each cluster,
we fine-tune a specialized version of a base DNN, thereby creating an ensemble
of expert DNNSs, each tailored to a specific data regime. During inference, the
most recent input subsequence is compared to the cluster centroids, and the
closest matching expert DNN is selected for prediction. This process enables
dynamic model selection that aligns with the current temporal context, improv-
ing forecasting accuracy and robustness. To further enhance adaptability, we
incorporate a concept drift detection mechanism that identifies emerging patterns
in the time series data. When a new pattern is detected that does not align with
existing clusters, the framework triggers the creation of a new specialized DNN
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or updates the existing model pool. This ensures that the forecasting system
remains responsive to non-stationary dynamics without requiring full retraining.
The main contributions of this work are summarized as follows:

— We propose an adaptive pattern-based framework for time series forecasting
that leverages clustering and local specialization to address data heterogeneity
and concept drift.

— We demonstrate the generalization of the framework across various DNN
architectures such as CNN, LSTM, TFT, DeepAR, and MQ-CNN.

— We integrate a concept drift detection mechanism to maintain up-to-date
model specialization and ensure robustness against non-stationary behavior.

— We conduct extensive experiments on diverse time series datasets to evaluate
the effectiveness of our approach. Results show consistent improvements in
predictive accuracy over traditional DNN training.

2 Related Work

In this section, we review existing literature on deep learning-based forecasting
models, as well as approaches aimed at model specialization and adaptation for
handling pattern heterogeneity and non-stationarity in time series data.

2.1 On Deep Learning for Time Series Forecasting

Recent advancements in deep learning have led to a proliferation of neural net-
work architectures tailored for time series forecasting. Recurrent neural networks
(RNNs), particularly long short-term memory (LSTM) networks [4], have been
extensively adopted due to their ability to capture long-range temporal depen-
dencies. In parallel, convolutional neural networks (CNNs) have demonstrated
competitive performance in forecasting tasks, offering improved computational
efficiency compared to RNN-based models, particularly when handling high-
dimensional time series data [9].

Comprehensive toolkits such as GluonTS [1] have further accelerated the adop-
tion of deep neural networks (DNNs) by providing standardized implementations
of various state-of-the-art architectures. Notable examples include DeepAR, which
utilizes autoregressive recurrent neural networks (RNNs), specifically LSTMs or
gated recurrent units (GRUs), to generate probabilistic forecasts [18]. DeepAR has
demonstrated strong performance in capturing complex temporal dependencies
through sequential modeling. Similarly, DeepState extends RNN-based modeling
by incorporating Kalman filtering to improve probabilistic forecasting [11]. Other
architectures, such as MQ-RNN and MQ-CNN, focus on sequence-to-sequence
forecasting by integrating recurrent or convolutional encoders with quantile-based
decoders to estimate prediction intervals and provide uncertainty quantification
[20]. DeepFactor advances this line of work by jointly modeling global factors and
local patterns [19]. More recently, transformer-based architectures have emerged
as powerful alternatives for time series forecasting, owing to their capacity to
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model complex dependencies without relying on recurrent structures [8]. These
models, inspired by the success of transformers in natural language process-
ing, offer improved scalability and flexibility, particularly in settings involving
long-range temporal correlations.

2.2 On Model Specialization and Adaptation Across Patterns

Despite the advancements in DNN architectures, a fundamental challenge remains:
achieving robust forecasting performance across varying data regimes and under
non-stationary conditions. Most existing DNN models are designed to learn a
global mapping from historical observations to future predictions, limiting their
ability to adapt to evolving patterns or heterogeneous temporal behaviors present
in real-world data. To address these limitations, recent works have explored
adaptive and specialized model selection strategies. Saadallah et al. [12] proposed
an online deep hybrid ensemble learning framework that dynamically selects
and weights deep neural networks based on their local performance in streaming
time series data. This approach enables the system to adapt to concept drift
and heterogeneous temporal regimes through an ensemble of specialized models.
In a related line of work, in [14], an explainable online deep neural network
selection framework that leverages adaptive saliency maps to guide the selection
of the most relevant DNN model for each input pattern is introduced. This
method not only enhances forecasting accuracy by exploiting localized model
expertise but also improves interpretability by highlighting the input time series
segments influencing model selection. Further advancing the concept of model
specialization, an explainable online ensemble of DNNs pruning approach is
proposed in [15]. By dynamically pruning and combining deep neural networks,
their method adapts the ensemble structure to reflect the evolving relevance of
different models across changing input patterns, maintaining both predictive
accuracy and computational efficiency.

While prior approaches have demonstrated the benefits of adaptive deep
neural network (DNN) selection and pruning to address concept drift and data
heterogeneity [14, 15, 12|, they primarily rely on online learning mechanisms and
ensemble strategies that dynamically adjust model selection or weighting at
inference time. These methods often focus on switching between independently
trained architectures or pruning weaker models from the ensemble without
explicitly improving the training processes or convergence of the individual DNNs
themselves. Specifically, they rely on traditional training paradigms in which
each model is optimized on the entire historical time series, failing to account for
localized temporal patterns or dominant regimes that may benefit from targeted
specialization. As a result, while these approaches can enhance predictive accuracy
through selection and aggregation, they do not directly address the underlying
challenge of adapting DNN parameters to distinct time-varying behaviors within
the data. In contrast, our proposed framework introduces a novel offline pattern-
based model specialization strategy, where a base DNN is fine-tuned on clustered
dominant patterns to create a set of specialized experts. This design allows for
tailored model adaptation to distinct regimes identified during training, with
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efficient model selection based on similarity to recent input patterns during
inference. Additionally, our integration of a concept drift detection mechanism
enables the dynamic inclusion of new expert models as emerging patterns are
observed, bridging the gap between offline specialization and online adaptation.

3 Methodology

3.1 Notation and Problem Formulation

We address the problem of univariate time series forecasting, where the objective
is to predict future values of a time series based on its historical observations.
Formally, let 7 = {x;}¥, represent a univariate time series of length N, where
z: € R represents the value of 7 at time step ¢. The forecasting task involves
learning a DNN f(-) that maps an input window of the p most recent observations,
Sy =A{@i—py1,..., 2}, to a forecast Ty11 of the next time step, i.e., Ty11 = f(St).

To achieve this, the time series 7 is partitioned into three disjoint subsets
with distinct roles. The training set, denoted as Tirain, is used to train a base
deep neural network (DNN) model on the entire historical time series data. This
DNN learns a general representation of the underlying temporal dynamics. The
validation set, 7Ty, serves to identify and cluster dominant patterns within the
time series. These clusters are used to derive specialized DNNs that capture
distinct temporal behaviors present in different regimes. The test set, Tiest, 18
employed for inference and the evaluation of forecasting performance.

The ultimate goal is to enhance forecasting accuracy and robustness in non-
stationary environments by adapting and specializing deep learning models to
the dominant patterns present in different segments of the time series. During
inference, the framework dynamically selects the most suitable specialized DNN
based on the similarity between the current input window and the learned cluster
centroids, thereby addressing the limitations of conventional, globally trained
models in the presence of concept drift and heterogeneous temporal behaviors.

3.2 Dominant Patterns Identification

To capture the diverse temporal dynamics within the time series data, we perform
clustering over the validation subsequences to identify K dominant patterns.

Specifically, we partition the validation set 7y, into a collection of non-overlapping
‘Tval‘
subsequences Sya = {Si}itzlp , where each subsequence S; is of length p. The

length p is consistent with the input window size used during the training of
the base DNN model My, ensuring alignment between clustering and model
training procedures. We employ K-Means clustering with the Euclidean distance
metric, defined as d(S5;, S;) = ||S; — Sjl|2, to group subsequences that exhibit
similar temporal structures. The primary objective of this clustering process is
to uncover regions of the time series that share common temporal characteristics,
which we refer to as dominant patterns.
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The clustering procedure produces K distinct clusters C = {C’k}szl, where
each cluster Cy represents a distinct dominant pattern. The centroid py of
each cluster is computed as: pp = ﬁz S0y S;. These centroids serve as
representative references and are later used to assign incoming test sequences
to the most appropriate specialized model during inference. For each cluster Cy,
we fine-tune the base DNN My,s on the corresponding validation subsequences
{S; € C}, yielding a specialized DNN M. This fine-tuning process enables each
My, to capture the specific dynamics of its associated dominant pattern, thereby
enhancing forecasting accuracy in regions of the time series that exhibit similar
behaviors. In order to ensure that each cluster C) contains a sufficient number
of subsequences to enable effective fine-tuning of the specialized DNN M, we
impose a size constraint (7m,i,) on the clustering process.

3.3 Specialization via Fine-Tuning

Initialization: Base Model Training and Weight Transfer The initializa-
tion phase of our framework begins with training a general-purpose base DNN
My.se on the entire training set Tirain. This model is responsible for learning
a broad representation of the time series data, capturing the overall dynamics
present in the historical observations. My,se serves as the foundation for the
specialization process, providing a well-initialized set of weights that will later be
adapted to specific dominant patterns. Formally, the base model is optimized by
minimizing the forecasting 1oss Leorecast OVer Tirain:

Opase = arg Hbin Leorecast (MH (ﬂrain); ﬁzziet) s (1)
where 0, denotes the learned weights of M .s., and ﬁzzgiet represents the

target future values for prediction. Once trained, M.s encapsulates a generalized
representation of the time series dynamics but lacks specialization toward specific
dominant patterns identified during validation.

Transition from General to Specialized Weights The transition from a
general DNN to pattern-specialized DNNs involves the fine-tuning of the base
DNN My.se on pattern-specific data. Each dominant pattern is represented by a
cluster (Y, derived from the validation set 7y.;. For each cluster Cj, we initialize
a specialized DNN M}, by copying the weights from the base DNN:

0 + Opase. (2)

This weight transfer ensures that each M}, starts from a well-optimized initializa-
tion, benefiting from the knowledge encoded by Myase. Subsequently, each M
undergoes fine-tuning on its respective cluster data Cy to learn the characteristics
of the corresponding pattern:

0, = arg mein Lrorecast (M9 (Ck)v CltcargEt) : (3)
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Fine-tuning on C} enables the DNN M}, to adapt its parameters specifically to
the regime represented by the cluster. The weights 6;, gradually shift from the
global parameters 0,5 to pattern-specialized parameters, capturing the nuances
of localized temporal dependencies.

This two-stage training strategy leverages both the generalization capacity
of the base DNN M},,s and the specialization capability of the pattern-specific
DNNs My. Specifically, My,,s. is trained on the entire historical dataset Tiain,
enabling it to capture broad temporal features and general patterns inherent
in the time series. Building on this foundation, each specialized DNN M}, is
further fine-tuned on a specific cluster of data Cy, allowing it to adapt to the
unique temporal dynamics and regime-specific characteristics represented by
that dominant pattern. This hierarchical approach ensures a balance between
generalization and specialization, leading to models that are both robust and
highly tailored to distinct patterns within the data. The transition of weights
can be interpreted as:

O = Opase + Ar, (4)

where Ay, represents the adaptation from general dynamics to pattern-specific
characteristics induced by Cj.

3.4 Integration into Inference and Drift Adaptation

During inference, the nearest dominant pattern to the most recently acquired
pattern is identified via similarity to cluster centroids ug, as described in Sec-
tion 3.2. Given the current input window Sy of size p, we compute its similarity
to each cluster centroid puy:

K = argmind(Si, ) (5)

Once the most similar cluster is determined, its corresponding specialized DNN
My~ is deployed for forecasting.

In the presence of concept drift, new dominant patterns that are not rep-
resented by the existing clusters may emerge. To detect this, we monitor the
evolution of the distance between the current pattern S; and the closest cluster
center: d; = ming d(St, ). We record a reference distance dyof at the start of the
inference phase and continuously monitor deviations 8y = |diqr — dret|. If the
minimum distance diverges over time, i.e., meaning that the old pre-computed
dominant patterns can not inform about the most recent patterns. A drift is
assumed to have occurred at t+ h if the true mean of § significantly diverges from
0. To determine this, we use the well-known Hoeffding-Bound [5], which states
that after w independent observations of a real-value random variable with range
R, its true mean has not diverged if the sample mean is contained within +£.

Here, ¢ is defined as: 4/ }%21378/7) with a probability of 1 — v, a user-defined hy-
perparameter. If a significant drift is detected, indicated by a divergence between
the new input patterns and existing cluster centroids (e.g., exceeding a threshold

0), we trigger the re-clustering process on a sliding window of recent data Trecent-
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New clusters Cpew = {C}X | and their centroids {u}}!, are computed. To
update the existing pool of clusters C = {Cyx} |, we evaluate the similarity
between each new centroid u;- and the existing centroids pg. If a new cluster
C]‘ represents a pattern that is sufficiently distinct from all existing clusters, it
is incorporated as a new dominant pattern and a new specialized DNN M is
fine-tuned on C}, and added to the pool of models. Formally, this is determined
by:
If min d(uj, px) > 7, thenadd C; to C

where d(-,-) denotes the distance metric (e.g., Euclidean distance) between the
centroids, and 7 is a predefined threshold controlling the similarity criterion for
merging or adding clusters.

4 Experiments

This work addresses the following key research questions to evaluate the effec-
tiveness, adaptability, and efficiency of our proposed pattern-based fine-tuning
framework for deep neural networks (DNNs) in time series forecasting: RQ1
How dominant patterns in time series data are identified and leveraged for model
specialization?; RQ2 Does pattern-based fine-tuning of DNNs yield improved
forecasting accuracy compared to traditional training (Base)?; RQ3 How does the
integration of concept drift detection and online adaptation impact forecasting
performance?; RQ4 What is the trade-off between forecasting accuracy and
computational efficiency in the online drift-aware fine-tuning versus periodic
blind adaptation?; RQ5 Can pattern-based fine-tuning compensate for subop-
timal DNN architectures and improve performance under constrained model
configurations?

4.1 Experimental Set-up

A total of 113 real-world time series were utilized, originating from diverse
application scenarios, including weather data, sensor readings, and financial
forecasting. The datasets description is included in the supplementary material.
The code and datasets are publicly available!. The list of all the parameters
used in the Methodology is summarized in Table 1. The methods used in the
experiments were evaluated using the root mean squared error (RMSE).

Forecasting DNNs Set-up To thoroughly assess the predictive capabilities
across different DNN architectures, we considered a broad pool of DNNs that
have been either traditionally employed for forecasting or adapted from other
domains to meet forecasting challenges. The First family consists of classical deep
learning models: Multi-Layer Perceptron (MLP), Long Short-Term Memory
network (LSTM), Convolutional Neural Networks (CNN), and a hybrid model

. https://www.dropbox.com/scl/fo/2nipxobeqaeqx68mpvg;j2/AIGsCNCuvFADR4JOHf vquUk?rlkey=
hj5a8sd6k6orwji6idptvgvov&st=p193wdwm&dl=0
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Table 1: Summary of Parameters, Descriptions, and Values

Parameter __ [Description Value
[T train], [7 vall,| Proportion of train, validation 10%, 40%, 20%
[T test| and test sets, respectively.
p Length of the input subsequences used 10
for clustering and DNN training
K Number of clusters Auto. X-means [10]
Pmin Minimum number of subsequences per cluster|10% of [T val|
5 The Hoeffding-Bound parameter 0.05
b Threshold for cluster fusion 20% of the Inter-Cluster Distance

combining CNN with an LSTM layer (CNN-LSTM). The second group is
composed of advanced deep learning architectures that have been specifically
engineered to tackle the challenges of time series forecasting and are included
in the GluonTS Python library [1]: Temporal Regularized Matrix Factorization
(TRMF), Long- and Short-term Time-series Network (LSTNet), Deep Global
Local Forecaster (DeepGlo), DeepState, Deep Auto-Regressive (DeepAR),
DeepFactor, MQ-CNN;, and Temporal Fusion Transformer (TFT).

Variants of Weights Learning and Fine-Tuning For each DNN, we compute
different weight learning or tuning versions: Base: involves the traditional training
where the weights are learned on the whole training time series data and kept
static during inference; The following fine-tuning versions are three variations of
our pattern-based fine-tuning approach:

— Offline-Tune: After learning base weights, we apply our methodology for
pattern-based fine-tuning. However, no adaptation using concept drift detec-
tion is included.

— Online-Tune: Our full fine-tuning version using pattern-based specialization
and concept drift adaptation;

— Periodic-Tune: Our fine-tuning version uses pattern-based specialization
and blind adaptation in a periodic manner with each 10% of upcoming time
series observations of the new data in the test set.

5 Results and Discussion

Cluster 1 Cluster 2 Cluster 3 Cluster 4.

Fig. 1: Clusters Visualization of the Tourism Time Series Data Set.
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Fig. 2: Global vs. Local RMSE Comparison on the Tourism Time Series Data.

Figures 3 and 1 illustrate the results of clustering time series subsequences from
the London Smart Meters and the Tourism datasets. Figure 2 directly compares
RMSE values per model across global and local forecasts (Clusters) on the
Tourism data. Table 2 presents a comprehensive comparison of the performance
of different deep neural network (DNN) architectures under four distinct training
and adaptation strategies: Base, Offline-Tune, Online-Tune, and Periodic-
Tune. Each row corresponds to a specific DNN model (e.g., CNN, DeepGlo,
CNN-LSTM, etc.) and reports its performance across several key metrics. The
Avg. nRMSE/ Std. nRMSE columns represent the average and the standard
deviation of the normalized root mean square error across all time series datasets.
The Ranking DNN Arch. column represents the relative rank using the nRMSE
of each architecture when averaged over all datasets for each family of DNN
separately.

Fig. 3: Clustered Subsequences Visualization of a time series in the London Smart
Meters dataset
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Table 2: Performance comparison across different DNN architectures and tuning

strategies.
Model Strategy | Avg. nRMSE|Std. nRMSE |Ranking DNN Arch.|Avg. Global Ranking|Std. Global Ranking
CNN Base 0.166 0.17 3.70 29.47 12.61
Offline 0.135 0.13 2.27 28.08 9.71
Online 0.120 0.12 2.04 26.50 8.94
Periodic 0.113 0.10 1.39 20.80 8.33
DeepGlo Base 0.158 0.14 3.12 37.07 7.35
Offline 0.144 0.13 2.49 34.22 8.65
Online 0.131 0.12 2.16 33.22 9.61
Periodic 0.128 0.11 1.64 30.28 11.02
CNN-LSTM |Base 0.158 0.15 3.70 31.73 9.44
Offline 0.138 0.13 2.27 21.81 9.21
Online 0.125 0.12 1.96 21.47 8.15
Periodic 0.118 0.11 1.46 20.64 9.08
DeepFactor |Base 0.113 0.09 3.70 27.71 11.30
Offline 0.095 0.08 2.32 15.20 10.62
Online 0.091 0.08 2.05 16.23 10.79
Periodic 0.086 0.08 1.33 13.69 9.12
DeepState |Base 0.136 0.11 3.69 31.73 9.18
Offline 0.118 0.10 2.32 22.77 10.12
Online 0.114 0.10 2.04 21.81 9.91
Periodic 0.104 0.09 1.35 15.86 8.48
MQ-CNN  |Base 0.168 0.17 3.63 29.79 13.41
Offline 0.147 0.15 2.29 25.64 12.70
Online 0.133 0.13 2.03 19.21 11.92
Periodic 0.124 0.12 1.45 19.93 9.84
TFT Base 0.115 0.10 3.55 26.84 13.72
Offline 0.088 0.07 2.28 10.88 14.17
Online 0.083 0.06 2.00 9.87 14.11
Periodic 0.079 0.06 1.57 9.12 14.03
LSTM Base 0.167 0.16 3.70 34.37 10.09
Offline 0.153 0.14 2.26 26.33 11.62
Online 0.141 0.14 2.00 25.42 11.00
Periodic 0.133 0.12 1.44 23.89 10.82
MLP Base 0.152 0.15 3.78 27.73 11.49
Offline 0.127 0.12 2.17 16.26 8.23
Online 0.112 0.11 1.98 15.31 8.04
Periodic 0.106 0.09 1.47 9.88 7.34
LSTnet-Skip|Base 0.174 0.18 3.54 31.27 12.06
Offline 0.123 0.12 2.32 19.20 10.91
Online 0.105 0.10 2.05 12.65 10.24
Periodic 0.104 0.09 1.49 11.59 9.60
DeepAR Base 0.158 0.14 3.73 35.04 7.18
Offline 0.142 0.13 2.32 27.63 7.96
Online 0.129 0.12 2.05 26.67 7.80
Periodic 0.123 0.11 1.30 20.17 9.11

Table 3 compares the computational efficiency of the Online-Tune and
Periodic-Tune strategies. Table 4 presents a comparative analysis of the fore-
casting performance between optimized and under-optimized versions of various
deep neural network (DNN) architectures. The Base (Opt) and Online (Opt)
columns correspond to the fully optimized models, trained and fine-tuned ac-
cording to best practices. In contrast, the Base (Under-Opt) and Online
(Under-Opt) columns reflect simplified architectures with reduced complex-
ity, designed to assess the impact of our online fine-tuning methodology under
suboptimal conditions.

RQ1: Dominant Patterns in Time Series Data The identification of
dominant patterns in time series data is a cornerstone of our proposed fine-tuning
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Table 3: Runtime Comparison Between Online-Tune and Periodic-Tune Strategies
(in seconds). The table reports both the average runtime and its standard deviation
across all datasets.

Model Average Runtime (s)|Std Runtime (s)
Online-Tune 15.62 11.15
Periodic-Tune 78.62 91.55

Table 4: Comparison of Base and Online Fine-Tuning Performance Between
Optimized and Under-Optimized Models. The values represent the average
normalized RMSE (nRMSE) across datasets for each model configuration. Lower
values indicate better forecasting performance.

Model Base (Opt)|Online (Opt)|Base (Under-Opt)|Online (Under-Opt)
CNN 0.166 0.120 0.170 0.131
CNN-LSTM 0.158 0.125 0.174 0.135
DeepFactor 0.113 0.091 0.131 0.110
DeepGlo 0.158 0.131 0.166 0.150
DeepState 0.136 0.114 0.166 0.146
LSTM 0.167 0.141 0.177 0.150
LSTNet-Skip 0.174 0.105 0.181 0.125
MQ-CNN 0.168 0.133 0.170 0.139
TFT 0.115 0.083 0.148 0.119

framework. We show two representative examples of time series datasets, namely
London energy consumption and Tourism demand forecasting.

For the Tourism time series data in Figure 1, the clustering process segments
the data into regimes with varying complexity. Cluster 1 captures noisy pat-
terns with frequent local fluctuations, posing significant challenges for accurate
forecasting. In contrast, Clusters 2, 3, and 4 demonstrate well-defined trend
structures—Cluster 2 follows a rise-and-fall trajectory, and Cluster 3 shows a
consistent downward trend. These clearly structured patterns are more conducive
to learning and forecasting by DNN models. Cluster 4, characterized by an
increasing trend with high variability, highlights the challenge of forecasting
under volatile conditions. As illustrated in Figure 1, the localized forecasting
performance of models, when specialized for specific clusters, varies from global
models trained on the entire time series data. This confirms that dominant pat-
tern identification through clustering can effectively support localized forecasting
strategies by decomposing complex time series into simpler, learnable regimes.

Similarly, for the London time series data, the clustering results, illustrated in
Figure 3, reveal distinct and well-structured patterns. Each subplot corresponds
to a cluster, where the grouped subsequences exhibit highly similar temporal
behaviors. Specifically, Clusters 1 and 5 exhibit sharp peaks followed by gradual
declines, which correspond to recurring peaks in energy consumption during
certain periods (e.g., daily or seasonal usage spikes). Cluster 7 displays regular
periodic fluctuations, indicative of cyclical energy demand, while Clusters 2 and
3 show patterns characterized by relatively low variability with localized peaks.
This segmentation indicates that the clustering method effectively differentiates
between various temporal regimes, enabling the specialization of models on
distinct patterns.
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RQ2: Comparison of Pattern-based Fine-Tuning of DNNs to Traditional
Training (Base) The results presented in Table 2 provide strong empirical
evidence that pattern-based fine-tuning significantly enhances forecasting accu-
racy across a wide range of DNN architectures. Specifically, our Offline-Tune
strategy, which fine-tunes DNNs on dominant patterns without incorporating
online adaptation, consistently and significantly outperforms the Base approach.
The introduction of the adaptation to new emerging patterns, either blindly
with the Periodic-Tune version or in an informed manner following concept-drift
detection with Online-Tune, further improved the forecasting accuracy compared
to the traditional base approach. For example, the CNN-LSTM architecture
exhibits a reduction in nRMSE from 0.158 (Base) to 0.138 (Offline-Tune), while
the LSTnet-Skip model improves from 0.174 to 0.123. Further improvement is
achieved with the Online and Periodic-Tune to reach 0.105 and 0.104, respectively.
These improvements are attributed to the enhanced ability of the fine-tuned
models to specialize in the localized temporal dynamics of distinct clusters, as
opposed to relying on a generalized model trained on heterogeneous data.

Furthermore, the consistent performance gains observed across different ar-
chitectures—including both RNN-based models (e.g., LSTM, DeepAR) and
attention-based models (e.g., TFT)—highlight the general applicability and ro-
bustness of our pattern-based fine-tuning strategy. This is confirmed by the local
average ranking per architecture that shows consistently lower ranks (better
performance, rank 1 means the method is the best on all the data sets) for the
Periodic and the Online versions. The global ranking across all the models and
the datasets (the last two columns in Table 2) confirms these findings. It is clear
that the Offline, Periodic, and Online have significantly lower ranks compared
to the Base version. For example, for MLP, while the base traditional training
scores an average rank of 27.73, the rank drops significantly to lower than 17
with the pattern-based fine-tuning versions. Similar to DeepFactor, we notice
a decrease in the global average rank from 27.71 to 16.23 and 13.69 with the
Periodic and the Online-Tune, respectively.

The results confirm that by leveraging dominant patterns identified during
validation, our method facilitates better model adaptation to specific temporal
structures, improving overall forecasting accuracy.

RQ3/RQ4:Trade-off Forecasting Accuracy and Computational Effi-
ciency in Online Adapatation The Online-Tune strategy extends the Offline-
Tune approach by integrating concept drift detection to adapt to emerging
patterns during inference. As shown in Table 2, Online-Tune yields further per-
formance improvements over Offline-Tune across all DNN architectures. For
instance, LSThet-skip improves its nRMSE from 0.123 (Offline) to 0.105 (Ounline),
and TFT achieves an improvement from 0.088 to 0.083. The average global
rankings also improve under the Online-Tune strategy, indicating its ability to
maintain superior performance over time, even as data distributions shift. The
dynamic adaptation mechanism, driven by concept drift detection, enables the
recalibration of model weights and the introduction of new specialized models
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for newly detected patterns. This prevents performance degradation due to non-
stationarity in the data and ensures that the models remain aligned with the
evolving temporal dynamics.

However, when compared to the Periodic-Tune strategy, Online-Tune generally
yields lower accuracy. Specifically, the Periodic-Tune approach achieves the best
overall Avg. nRMSE across the majority of models (e.g., CNN: 0.113, DeepFactor:
0.086, and TFT: 0.079), outperforming Online-Tune. This performance gap can
be attributed to several potential factors. First, in the Online-Tune strategy, the
reliance on concept drift detection mechanisms may lead to missed drift events,
particularly when the detection sensitivity is not optimally configured. As a
result, the system may fail to recognize subtle or gradual changes in the data
distribution, leading to delayed or insufficient model updates. Second, the drift
detection mechanism may introduce latency, where adaptation occurs after a drift
has already affected forecasting accuracy. In contrast, the Periodic-Tune strategy
blindly triggers adaptation at regular intervals (every 10% of new observations
in our setting), ensuring continuous updates irrespective of drift signals. This
proactive behavior, though computationally more expensive, guarantees that the
model periodically realigns with the latest data distribution, leading to superior
accuracy at the cost of a significantly higher runtime. The average runtime
of Online-Tune is 15.62 seconds, compared to 78.62 seconds for Periodic-Tune,
representing an 80% reduction in computational overhead.

To close the performance gap between Online-Tune and Periodic-Tune, fur-
ther tuning of the concept drift detection parameters is warranted. Additionally,
combining drift detection with auxiliary performance monitors (e.g., tracking
local RMSE or coverage metrics) could improve the robustness of the Online-Tune
strategy. These enhancements will allow for more precise, timely adaptations
while preserving the computational efficiency demonstrated by the current imple-
mentation.

RQ5: Compensation for Suboptimal DNN Architectures using Pattern-
based Fine-tuning The results presented in Table 4 offer compelling evidence
regarding the capacity of our pattern-based fine-tuning framework to mitigate
the limitations of under-optimized deep neural network (DNN) architectures.
Specifically, we compare forecasting performance across two axes: optimized
versus under-optimized models and standard Base training versus our Online
fine-tuning approach.

For all tested DNN models, under-optimized architectures—characterized
by simplified structures and reduced parameter complexity—predictably yield
inferior forecasting performance when trained with conventional methods (Base
Under-Opt). For example, the CNN-LSTM model’s base performance degrades
from an average normalized RMSE (nRMSE) of 0.158 (Base Opt) to 0.174 (Base
Under-Opt). Similar degradations are observed for DeepState (0.136 to 0.166)
and TFT (0.115 to 0.148). However, once our pattern-based Online Fine-Tuning
is applied, the under-optimized models show substantial improvements. In several
cases, the performance of these simpler models approaches or even exceeds that
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of their fully optimized counterparts under standard training. For instance, the
CNN model improves from 0.170 (Base Under-Opt) to 0.131 (Online Under-Opt),
exceeding its optimized Base version (0.166) and closely matching its optimized
Online performance (0.120). Despite being under-optimized, the DeepFactor
model achieves an nRMSE of 0.110 with online fine-tuning, narrowing the gap
with its optimized version (0.091). MQ-CNN shows a marked improvement from
0.170 (Base Under-Opt) to 0.139 (Online Under-Opt), closing in on its optimized
Ouline performance (0.133). These findings indicate that our approach is effective
in compensating for reduced architectural capacity by leveraging specialized
adaptation to dominant temporal patterns. The fine-tuning process enables even
simplified networks to focus on pattern-specific dynamics, extracting relevant
information with fewer parameters and improving generalization within local-
ized regimes. The practical implications are significant in resource-constrained
environments—such as edge devices or real-time applications—and our method
allows the deployment of lighter DNN architectures without sacrificing substan-
tial accuracy. Furthermore, this compensatory effect reduces the dependency
on complex and computationally expensive hyperparameter optimization and
architectural search procedures.

6 Concluding Remarks and Future Work

This paper introduced a novel framework for pattern-based fine-tuning of deep
neural networks (DNNs) in time series forecasting. By identifying dominant
temporal patterns through clustering and fine-tuning specialized DNNs on these
distinct regimes, the proposed approach enables models to adapt effectively to the
dynamic and non-stationary characteristics of real-world time series. Extensive
experiments demonstrated consistent gains in forecasting accuracy across both
optimized and under-optimized DNN architectures. Additionally, we highlighted
the trade-off between online and periodic fine-tuning in terms of accuracy and
computational efficiency. Future work will focus on enhancing the concept drift
detection mechanism by adaptively tuning its sensitivity parameters to reduce
missed drifts. We also aim to explore advanced dynamic clustering methods for
more robust pattern identification. Integrating automated architecture search
and hyperparameter optimization will be considered to further improve the
adaptability and efficiency of the proposed framework.
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