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Abstract. Motifs in multivariate time series reveal critical non-periodic
behaviors in biophysiological, geophysical, urban, and societal systems.
This work takes motif analysis one step further by exploring the recur-
rence dynamics of multidimensional motifs to enhance the forecasting
of events of interest, focusing on regressing the timing of a motif’s next
occurrence. This task is challenged by the inherent stochasticity of real-
world system behaviors and heterogeneity of data inputs, combining the
raw multivariate time series and available motif information. To address
these challenges, two major hypotheses are established: i) that some ir-
regular behaviors show indeed a form of less trivial temporal regularity,
possibly described by a non-linear function; and ii) the occurrence of
motifs in some systems can be anticipated by precursor signals, such
as emerging traffic behaviors prior to congestion or subtle physiological
patterns preceding health events. A novel methodology is proposed to
expressively encode motif information and subsequently combine state-
of-the-art neural processing principles to answer the target forecasting
task. Experimental results demonstrate that it is feasible to accurately
estimate the next occurrence of a given motif in arbitrarily complex tasks
by leveraging the value embedded in the two proposed hypotheses. Fur-
thermore, we show that augmenting the multivariate input series with
motif-aware masking significantly enhances the predictive accuracy of
recurrent and convolutional forecasters.

Keywords: Prediction - Multivariate Time series - Motif Discovery

1 Introduction

Motifs are recurring structures in data. Research on motif discovery has primar-
ily focused on developing efficient and quasi-optimal search methods to identify
motifs with unexpectedly high recurrence [48, [49], often overlooking the un-
derlying regularities behind the recurrence phenomena. As recurrence is often
non-periodic [21], understanding the latent patterns governing motif occurrences
is crucial for knowledge acquisition, whether we are assessing the spatial distri-
bution of motifs in network data or the temporal distribution of motifs in time
series data. In this context, modeling the recurrence dynamics of a given motif
can be used to establish a more comprehensive view of a system’s behaviors
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and subsequently support descriptive and predictive analyses. In biophysiolog-
ical systems, for instance, recognizing spatial regularities in brain activity or
temporal patterns in cardiac events is crucial for predicting health states [4} [19].

This work focuses on motifs with irregular (non-periodic) occurrences along
a multivariate time series and aims to forecast their next occurrence by learning
recurrence dynamics. Specifically, given a multidimensional motif of interest, we
address the rarely studied problem of predicting the timing of its next occurrence.
This task is widely relevant, with applications ranging from forecasting social
behaviors, organ activity, and traffic conditions to predicting stock movements,
mechanical failures, and atmospheric or astrophysical events [24] [39].

To pursue the targeted task — predicting the next occurrence of a given mo-
tif — the work is grounded on two key premises that provide strong evidence
for meaningful recurrence dynamics in irregular motifs. The first premise sug-
gests that motif occurrences in many real-world systems are often preceded by
precursor signals, which may be subtle but measurable [I6]. This is commonly
observed in various domains, where social, biophysiological, urban, machine, in-
dividual, ecosystemic, or financial behaviors are often preceded by identifiable
interactions, symptoms, emerging mobility patterns, anomalies, habits, intercon-
nected events, or market dynamics, respectively [15] 20} [26]. The second premise
states that non-periodic behaviors in many real-world systems can be described
by less trivial forms of recurrence, possibly by well-defined, yet non-linear, rules.
Examples include emerging behaviors characterized by subexponential growth
[5L 13, 27], as well as context-dependent motifs, such as mobility patterns during
public events, utility consumption fluctuations on holidays, weather-driven user
behaviors, and route-dependent vehicle dynamics [29, [31] [44].

A novel methodology for regressing the next occurrence time of a multidimen-
sional motif is proposed by jointly leveraging these two key principles: modeling
recurrence dynamics and capturing subtle precursor signals that may precede a
motif. In this context, we present four major contributions:

1. formalization of the next motif prediction task in light of existing research,
along with a comprehensive enumeration of its key requirements;
2. expressive mask-based encodings that consolidate raw time series data and
motif information (e.g., pattern, occurrences) to aid the predictive learning;
3. a novel methodology grounded on neural processing principles to answer the
targeted task, with a particular focus: i) on motif-aware segmentation strate-
gies for predictive modeling; and ii) adequate architectural choices, encom-
passing feed-forward, recurrent, convolutional, and transformer paradigms;
4. empirical evaluation of the proposed methodology on both simulated and
real-world datasets, assessing its effectiveness in capturing motif recurrence
dynamics under varying stochastic behaviors, temporal misalignments, and
precursor signal patterns.
The results confirm the feasibility of the next motif prediction task when either
or both premises are present. Long short-term memory (LSTM) models excel in
capturing non-trivial recurrence patterns governed by well-defined yet non-linear
rules, while temporal convolutional networks (TCN) and Transformer architec-
tures are more effective in leveraging subtle precursor signals for forecasting.
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2 Problem formulation

Definition 1. A time series X =< xX1,X2,...,X, > IS a Sequence of obser-
vations of length n, where an observation at time step t is a feature vector
x; = (xf,...,2") with m denoting the number of variables (multivariate or-

der). Each feature x] is either numeric z; € R or symbolic aci € X, where X
s a finite symbolic set.

The discovery of local patterns in time series data, such as biclusters [6],
anomalies [8], temporal rules [3], and motifs [42], is an active research field.
Among these local regularities, motifs became one of the essential primitives in
time series data mining, with several motif discovery algorithms proposed since
their introduction [10, 41}, [42] due to their key role for knowledge acquisition in
diverse domains, such as biomedicine [I9] and robotics [2].

Definition 2. Given a time series X of length n, a subsequence X; s j is
defined by its starting position i, length s, and a subset of variables J C Y, where
Y is the original set of m variables. If the subset J contains two or more variables
(i.e., |J| > 2), the subsequence is said to be multidimensional. Formally, a
subsequence is defined as X; 55 =< X;,...,Xi4s—1 >, Where each observation
X; = (irg)YjeJ contains only the features from the J subset of variables.

Definition 3. The motif discovery task in a time series X aims to find mo-
tifs, where a motif M is a subsequence satisfying predefined criteria, classically:

— a minimum recurrence criterion Tmin, which specifies that the motif must
appear at least romin times in the time series.

- a mazimum distance threshold dpmax, such that the dissimilarity between two
motif subsequences must not exceed dpyax n at least g of the m dimensions.

Formally, a motif M is a subsequence X; s j that appears r > rmin times, with a
pairwise distance between occurrences satisfying d(M;, M;) < dmax according to
a distance function d, in at least q of m dimensions. Let Opr = {t1,t2,...,t,}
be the set of starting positions where M occurs in X .

Time series motifs are approximately recurring subsequences along a longer
time series with unexpected frequency [4I]. A match is recognized when the
distance between two subsequences is below a predetermined distance threshold
dmax- Their recurrence can be concurrently observed across all time series vari-
ables or exclusively within a subset of variables. Figure [I] provides an illustrative

Multivariate Time Series with Shape, (4 x 15)

Integer 1 3|3 |5 |5|2|3|3|5|5|3]|3]|5]|4]4

Continuous | 4.3 |45 |26 (3.0 (3.0(1.7(49(29(33(19(49|25|31|18]|0.3

Ordinal A|D|B|D|A|A|]A|C|C|B|D|D|C|A|A

Nominal T|lL (T |Z|z|T|L|T|Z|T|L|T|Z|L]|L

Fig. 1: A multivariate time series of length n = 15 and dimensionality m = 4, illus-
trating a motif of length s = 3 with » = 3 occurrences at positions Oy = {2,7,11}.
The motif spans the first, second, and fourth dimensions.
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motif of length s=3 (highlighted in grey) in a time series of length n=15 and mul-
tivariate order m=4. The motif spans the first, second, and fourth dimensions,
while the third is excluded for not meeting a predefined similarity threshold.

Depending on the application, different algorithms for multivariate motif
discovery may be selected based on desirable types of patterns (e.g., fixed or
variable motif lengths [18], exact or approximate motifs [I0, 41]), search con-
straints [23], 4] (e.g., predefined minimum and maximum numbers of variables,
and inclusion or exclusion of specific variables), incorporation of statistical tests
to filter spurious motifs [7], or computational constraints (e.g., massive series
[47], streaming data [25]). Definitions of motifs also vary, ranging from motif
pairs to sets [24], with further differences in thresholds, recurrence criteria, and
variable selection.

Definition 4. Given a time series X of length n and a (multidimensional) mo-
tif of interest M = X, 5 ; with past occurrences Oy, the task of next motif
prediction aims to forecast the starting position k of the next occurrence of
M within a given future horizon of length h. The horizon is defined as the se-
quence of future observations X' = (Xp41,Xn+2,---,Xnth), where h defines the
lookahead window within which the next occurrence of M is expected to occur.

Formally, the objective is to learn a function f, such that: l%:f(Xn,w:n, M, h),
where Xy, . 1S the history window and k € NT is the predicted starting position
of the next occurrence of motif M in the interval [n+1,n+h|. The predictor f is
optimized to minimize a predefined loss function L(k, I:J) that penalizes deviations
between k and the actual next true occurrence k.

Critical non-periodic behaviors are pervasive across real-world systems, in-
cluding biological, urban, societal, physical, and digital systems [24] [33]. Mo-
tivated by the need to forecast occurrences of specific phenomena of interest,
especially when past occurrences are irregular, the target task of predicting the
next occurrence of a given motif is formalized in Def. 3. Unlike standard time se-
ries forecasting, which targets the projection of raw values, the goal is to estimate
when a structured recurrence, represented by a motif M, will reappear.

The task of predicting next motif occurrences shares conceptual similari-
ties with other well-established learning tasks for time series, particularly event
prediction [46], where the goal is to estimate the timing of future events using
methods such as survival models (e.g., Cox models [9]) and temporal point pro-
cesses (e.g., Hawkes and Poisson processes [32], 45]). However, distinctions arise
when considering how events and motifs are defined, the underlying recurrence
assumptions, and the learning methodologies used to forecast them.

The formulated task can be straightforwardly extended to consider the pre-
diction of all upcoming occurrences of a given motif along a horizon under a
multi-output regression formulation as Ou = f(Xn—wm, M, h), where Oy is
the set of predicted motif start times. Additionally, the upper bound placed by
the horizon of prediction can be removed for a more general formulation as a
continuous time-to-motif prediction. The problem can be alternatively formu-
lated as a binary classification task over a sliding window, which can be used to
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estimate the probability of a motif occurring within specific future intervals. The
task formulation admits several natural extensions, including the possibility of
inputting multiple motifs of interest M, requiring the model to jointly predict
multiple motifs’ future occurrences to support cross-motif synergistic learning,
resembling multi-task learning formulations.

3 Related work

Motif analysis has been previously explored to support classical time series fore-
casting tasks from multiple perspectives:

— to approximate periodic behaviors that fall outside seasonal patterning and
their subsequent projection along the horizon of prediction [34];

— to discover temporal association rules that link recurring patterns to sub-
sequent events, thereby capturing precursor—target relationships relevant to
forecasting [11] [16];

— to engineer features from motif statistics (e.g., occurrences, frequencies) and
incorporating them at the input level to enhance predictive performance
[36l, 38];

— to guide the segmentation of time series by selecting informative segments
based on the presence of specific motifs of interest to improve instance con-
struction during model training [40];

— to identify and isolate anomalous patterns to mitigate their distortive effects
on predictive models [21];

— to undertake similarity-based forecasting by identifying segments that con-
tain analogous behaviors to those close to the horizon of prediction [22];

— to reduce the complexity and overfitting risks of the forecasting task by using
motifs for summarizing or decreasing the dimensionality of the given series,
especially for series of high length or multivariate order [40]; or

— to integrate motif representations with raw time series inputs through dedi-
cated encoders or hybrid forecasting architectures [30, [37].

Despite the relevance of these contributions, they are not designed to address
the specific task of forecasting the next motif occurrence. In this context, five
major challenges arise. First, the need to condition the prediction task on spe-
cific motifs of interest. Second, the challenge of uncovering potential regularities
within non-periodic recurrence patterns, whether driven by non-linear dynamics
or latent precursor events. Third, the importance of placing adequate segmen-
tation criteria to guide the learning process of this specific task. Fourth, the
need to handle the inherent stochasticity associated with temporal dynamics of
real-world systems, generally associated with variable temporal misalignments.
Finally, the necessity of modeling multivariate dependencies, where certain vari-
ables may serve as contextual signals for the occurrence of target behaviors.
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4 Predicting the next motif occurrence

To address the task of predicting the next occurrence of a non-periodic behavior
in a high-dimensional time series, we explore two key premises. First, the recur-
rence dynamics of non-periodic motifs may follow complex, non-linear recurrence
dynamics, influenced by latent interactions, hidden regularities, or emerging be-
haviors that do not conform to strict periodicity. Second, motifs may be preceded
by subtle precursor signals embedded within the time series data, acting as pre-
dictive proxies that inform the timing of the next occurrence. Based on these
premises, this work proposes multiple-input neural network models to regress the
next occurrence of a motif subsequence in a multivariate time series. In particu-
lar; this methodology is positioned to answer the following technical questions:

— Which features can be extracted to guide the forecasting task? How to op-
timally encode them?

— Which neural architectures are best suited to learn non-periodic motif recur-
rence dynamics? How can temporal dependencies be effectively captured?

— How to segment the series and organize the resulting segments to support
the learning and assessment of the target predictors?

Encoding Motif Recurrence. It is often overly optimistic to expect learners
to predict occurrences of a motif using only the raw time series data as input
and the occurrence time as output. A simple regression model lacks critical
information about which motif is being analyzed, its prior occurrences, and how
these relate to future recurrence behavior.

To support neural models in learning motif recurrence patterns, we propose
encoding strategies that jointly represent the multivariate time series and the
structural recurrence of a given motif. Let X = (x1,X2,...,X,) be the multi-
variate time series, M = X; 5 ; the motif of interest, and Oy = {t1,t2,...,t.} C
{1,...,n} the set of known start positions of past occurrences of M. Let w € N*
be the length of the historical window and define the set of window indices as
W={n—-w+1,...,n} C{1,...,n}. We define the following encodings over
the window X,,_:n:

— Binary Mask Encoding: A sequence B € {0,1}", where B[t] = 1 if time index
t € W falls within any occurrence of motif M, i.e., if there exists t; € Oy
such that t € {t;,...,t; + s — 1}; otherwise, B[t] = 0.

— Historical Index Encoding: A sequence I = (t1,...,tx), where each t; €
On N W represents a past motif occurrence within the historical window.

These two forms of encoding can be used separately or complementarily, and
should provide sufficient information for the learners to perform the task, even
when the recurrence dynamics of a given motif are non-linear in nature.

While motif recurrence encodings provide structural recurrence information,
they may not be sufficient if the recurrence lacks strong underlying regularities.
In such cases, the raw (normalized) multivariate time series can be included as an
additional input source to capture precursor signals or latent dependencies that
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influence motif timing. In this context, multimodal stances, defined by the input
of multiple time series with non-identical length and order can be considered,
including those combining the raw time series, the target motif sequence, and/or
its historical indices.

Complementary encodings can be further envisioned, including numerical
time series representations that estimate the probability of a motif occurring at
each time point ¢ in the historical window. This probability can be derived from
predefined (elastic) distance ratios, such as multivariate dynamic time warping.

Neural Network Architectures for Motif Prediction. Considering the
proposed representations, time-aware deep learning models for next motif oc-
currence prediction are explored. We focus on neural architectures that leverage
well-established principles in multivariate time series learning, including:

— Long Short-Term Memory Networks [43]. Designed to capture long-range
temporal dependencies within multivariate time series, LSTMs aim to model
complex, non-periodic recurrence dynamics by maintaining and updating
memory states over time.

— Temporal Convolutional Neural Networks [I7]. By employing stacked con-
volutional and pooling layers, TCNs effectively extract medium-range re-
currence patterns in motifs, capturing local structures within multivariate
dependencies.

— Transformer-Based Models [35]. Leveraging self-attention mechanisms, Trans-
formers dynamically weigh relevant past information, enhancing their ability
to model long-range dependencies and interactions between precursor events.

Predictive Modeling via Motif-Aware Segmentation. To create the neces-
sary supervision to answer the target predictive task, state-of-the-art principles
for motif-aware segmentation of the input multivariate time series are suggested
[28]. In its simplest form, a sliding-window method can be used to generate
training, validation, and testing input-output pairs. The size of the input win-
dow should be sufficient to contain multiple instances of the motif — to facilitate
the learning phase —, with the output indicating the position of the subsequent
motif occurrence, either using as reference the start of the forecasting period
or the last occurrence of the motif. To assess the model’s performance, time-
aware partitioning of data instances should be employed to carefully preserve
the temporal order during the model’s training and testing phases, preventing
data leakage. The proposed setting can also be adapted to streaming scenarios,
where predictions are made online by applying incremental motif detection and
continuously evaluating the prediction function f over incoming data.

5 Results

Three distinct experimental settings were created to assess the role of the pro-
posed methodology in predicting motif occurrences. In particular, the following
three major research questions are tackled:
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— RQ1. To what degree can the regression approaches predict the emergence
of motif recurrence patterns?

— RQ2. To what extent can the proposed approaches leverage subtle signals
preceding motifs while maintaining robustness to stochastic fluctuations in
the motif’s occurrences?

— RQ3. How does the encoding of motif information impact forecasting be-
havior?

5.1 Datasets

We evaluate our method on synthetic and real-world multivariate time series.

Synthetic. Each dataset is a discrete-valued time series X = (xi,...,xy) of
length n = 100,000, dimension m = 3, with =7 € {1,...,5}.

Synthetic 1 embeds a fixed bivariate motif M = X 5 (1 3y at positions follow-
ing a repeating cycle of prime-numbered intervals {5,7,11,...,47}, generating
structured, non-uniform recurrence.

Synthetic 2 inserts the same motif at random intervals (2045 steps apart),
each preceded at 13-15 steps by a 5-length precursor in variables {1,3}, with
all values set to 5, forming a weak, yet informative, temporal cue with bounded
noise.

Real-world. Household Power. Minute-level electricity data from a French house-
hold [12], from Dec 2006-Nov 2010. We use Sept 1-Oct 24, 2008, aggregated to
5-minute intervals (n = 15,552, m = 2: active/reactive power in kW).

Lisbon Population. Hourly population density estimates via cellphone trian-
gulation (Vodafone Portugal), Sept 15-Nov 30, 2021. We use a univariate series
(n = 1,847) from the Avenidas Novas district.

5.2 Experimental setting

Evaluation. The evaluation differs between synthetic and real-world datasets.
For synthetic experiments, a rolling five-fold cross-validation is used. Each fold
consists of input—-output pairs: 100-point input windows and 50-point predic-
tion horizons. The target is the index of the next motif occurrence, relative to
the prediction start. A sliding window with step size 5 ensures chronological
integrity and sufficient training instances (Figure [2). We use a 64%/16%/20%
train-validation-test split, consistently across models.

time

Dataset i

X Instance 1
x Instance 2

X Instance n

Fig. 2: Input—output pair creation for training the regression models.

L J

instance step size
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For real-world case studies, the datasets are partitioned using a 70%/15%/15%
train-validation-test split. Five datasets are created, where each dataset corre-
sponds to one of the top 5 (multidimensional) motifs with regards to the number
of repetitions as identified by the motif discovery algorithm proposed in Yeh et al.
[41]. Each dataset consists of instances derived from its respective motif, which
serves as a reference pattern for the models to learn and predict. In the popula-
tion case, motifs repeat every 12 hours; inputs span 3 weeks (504h), outputs 2
days (48h), step 1. For electricity data, motifs are 3-hour sequences; inputs span
2 days (576 min), with 1-day horizons (288 min), step 5.

Model performance is evaluated using Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) on test sets. Statistical significance is assessed via
paired t-tests and Wilcoxon signed-rank (o < 0.05).

Hyperparameterization. Hyperparameter tuning is done using Optuna [I],
with models trained using mean squared error (MSE) loss and the Adam opti-
mizer [14]. Each model is optimized over 100 trials, tuning learning rates (log-
uniform between 107° and 1073), batch sizes from {4,8,16,32,64,128}, and
architecture-specific settings. Training runs up to 500 epochs, with early stop-
ping and a 15-minute time limit per trial.

We assess five architectures for the next motif task: Feed-Forward Neural
Networks (FNNs), Long Short-Term Memory (LSTMs), 1D Convolutional Neu-
ral Networks (1D-CNNs), Temporal Convolutional Networks (TCNs), and Trans-
formers. Table[I] details each model, including the baselines used for comparison.

FNNs use 1-4 layers, with hidden units sampled from {16, 32, 64,128, 256}.
LSTMs have 1-3 layers with hidden sizes from the same set. 1D-CNNs use 1-3
convolutional layers with filters from {16, 32,64}, kernel sizes {3,5,7}, and op-
tional pooling ({2,3}). TCNs use kernel sizes from {3, 5,7}, with block counts
set by receptive field size and channel sizes sampled from {16,32}. Transform-
ers vary over model dimensions {64, 128,256,512}, attention heads {2,4, 8,16},
1-3 encoder layers, feedforward sizes {128,256,512}, and dropout in [0.0,0.5].
Optimal configurations are selected based on validation loss.

Model Description

FNN A fully connected neural network with configurable input, hidden, and output layers,
with a final output layer for regression.

LSTM An LSTM-based sequence model with configurable layers, processing optional auxiliary
inputs, and a fully connected regression output layer.

1D-CNN A 1D convolutional neural network with configurable convolutional and pooling layers,
followed by a fully connected regression output layer.

TCN A temporal convolutional network using dilated convolutions and residual connections,
with a fully connected regression output layer.

Transformer A time series transformer model using attention mechanisms for sequence forecasting,
with configurable layers, heads, and a regression output layer.

Naive Naive predictive models as baselines. The time of next repetition is predicted using:
Average: average difference between consecutive time points.
Last: last observed difference between consecutive time points.

Table 1: Baseline and deep learning models for time series regression, including details
of the regression output layers.
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5.3 Synthetic data results

We assess model performance under two scenarios: Synthetic 1 with structured,
non-trivial motif recurrence, and Synthetic 2 with irregular motifs preceded by
weak precursors.

Non-trivial recurrence. Synthetic 1 simulates motifs occurring at intervals
defined by a cycle of prime-numbered lags. Three input encodings are compared:

— T'S: Raw time series, normalized across features.

— TS+B: TS augmented with a binary mask marking motif occurrences. This
encoding results in an augmented multivariate time series representation
with m + 1 variables, where m is the number of original variables.

— I: Normalized indices of past motif occurrences within the input window.
For example, <4, 18, 36> represents three occurrences of the target motif at
the specified time points.

Table [2] shows clear advantages for encodings that explicitly represent motif
positioning. Using raw time series data alone led to the poorest performance
across all models, as evidenced by the higher MAE and RMSE scores. The FNN
model showed the weakest performance (MAE = 8.937, RMSE = 11.175) signif-
icantly worse than both baselines, including the average distance between motifs

Model Input Configuration MAE RMSE
Naive Average I 7.061 £0.013 9.467 £ 0.009
Naive Last I 4.363+£0.008  7.538 £ 0.004
FNN TS Units=256, LR=3.0e-04, BS=16 8.937+£0.299 11.175+0.288
TS+B Units=256, 256, 256, 128, LR=8.6e-04, BS=16  1.0124+0.084  1.687 £+ 0.186
I Units=32, 256, 128, 256, LR=6.4e-04, BS=16 0.550 £ 0.299 1.043 £ 0.812
LSTM TS  Units=32, 16, 128, LR=8.7e-04, BS=32 4428 £1.535  7.396 & 1.348
TS+B Units=16, 128, 256, LR=3.8¢-04, BS=16 1.1004+0.319  2.905 + 0.883
I Units=16, 128, 256, LR=2.0e-04, BS=64 0.149 + 0.056 0.187 £ 0.058

Filters=16, 64, 64, KS=7, PS=3,

LR=7.5¢-04, BS=32

Filters=32, 32, 64, KS=7, PS=3,

LR=2.9¢-04, BS=64

Filters=64, 64, 64, 64, KS=7, PS=None
LR=8.6e-04, BS=32

Filters=16, 16, 16, 16, 32, KS=3, Dropout=0.026
LR—9.8¢-04, BS—16 1.088 + 0.049 1.752 + 0.347
Filters=32, 32, 32, 16, KS=7,
Dropout=7e-05, LR=6.1e-04, BS=32
Filters=32, 16, KS=5,
Dropout=0.041, LR=8.1e-04, BS=16

Emb.=64, Attention Heads=16, Enc. Layers=3,
FF=128, Dropout=0.093, LR=4.2e-04, BS=16
Emb.=256, Attention Heads=8, Enc. Layers=3,
FF=256, Dropout—=4e-04, LR=3.5¢-04, BS=64
Emb.=128, Attention Heads=8, Enc. Layers=1,
FF=128, Dropout=2e-04, LR=6.13e-04, BS=64

Table 2: Results on Synthetic 1 (non-trivial recurrence), reported as mean + std.
t. early stopping due to time limits. Inputs: TS = raw series; TS+B = binary mask; I = index
encoding of prior motifs. Bold: best per input with stat. significant improvement over baselines.

1D-CNN TS 6.418 £0.392  8.569 £ 0.501

TS+B 0.701 £0.085  0.968 £0.125

0.345 4+ 0.172 0.555 £ 0.281

TCN TSt
TS+Bf 0.521 4 0.301 0.708 + 0.441

0.817 £ 0.094 1.084 £0.198

Transformer TS 1.750 +0.242 3.790 £ 0.317

TS+B 0.553 £0.769  0.791 £1.137

I 0.404 £ 0.130 0.533 £0.191




The Next Motif: Forecasting Motif Recurrence Dynamics 11

for both MAE (p-value = 1e-04) and RMSE (p-value = 1e-04), as well as the last
distance between motifs for MAE (p-value = 4e-06) and RMSE (p-value = Te-
06). Likewise, the 1ID-CNN (MAE = 6.418, RMSE = 8.569) and LSTM (MAE
= 4.428, RMSE = 7.396) models encountered difficulty in effectively captur-
ing motif patterns, further highlighting the limitations of this encoding scheme
when applied under the assumption of periodic recurrence. Among all architec-
tures, the TCN model achieved the best performance using raw time series in-
put, notwithstanding early stopping constraints during training (MAE = 1.088,
RMSE = 1.752). However, even this superior performance was, on average, in-
ferior to the scores obtained with the TS-+B encoding (statistically significant
for MAE with p-value = 3e-04) and Index Encoding, both directly encoding the
positional information of the motif.

Adding a mask encoding to the time series data consistently produced statis-
tically significant reductions in MAE and RMSE scores across all models, par-
ticularly for the FNN and 1D-CNN architectures (p-values of 4e-07 and 4e-06 for
MAE, respectively). This suggests that explicitly marking motif positions within
the input enhances model predictive accuracy. Nevertheless, while TS+B en-
coding significantly outperformed the TS scheme, it did not consistently surpass
the performance of Index Encoding, as confirmed by statistical tests.

Notably, the use of Index Encoding markedly enhanced model performance,
especially for architectures designed to capture sequential dependencies. The
LSTM model, under Index Encoding, achieved the lowest error rates (MAE =
0.149, RMSE = 0.187), outperforming all other configurations. Similarly, other
models, such as the 1D-CNN and Transformer, exhibited notable improvements
with this encoding, underscoring its effectiveness in representing motif occur-
rences as a compact yet informative input format when occurrences conform to
well-defined yet non-linear rules.

These results confirm that under deterministic recurrence, explicitly encoding
prior motif positions is essential for accurate prediction, and that most architec-
tures cannot reliably infer this structure from raw input alone.

Precursors and stochastic recurrence. Synthetic 2 evaluates models under
irregular recurrence, where motifs are weakly preceded by literal precursor sig-
nals with bounded stochasticity. An LSTM with Index input (MAE = 5.780,
RMSE = 6.921) is used as a baseline, since it relies solely on motif positioning
and disregards precursor signals.

As shown in Table [3] all models outperformed naive baselines with TS in-
put, demonstrating that they capture some level of the underlying structures
that discriminate a motif occurrence. Specifically, they appear to account for
the temporal dependency that governs motif recurrence—when a motif has not
appeared for an extended period, its likelihood of occurring increases, whereas
if it has occurred recently, the probability of an immediate repetition decreases.

Using the LSTM with Index Encoding as a baseline, the LSTM, TCN, and
Transformer models exhibited statistically significant reductions in MAE (p-
values of 2.9e-04, 6.8e-04, and 3.8e-03, respectively). These results indicate that
these models effectively learn to detect and leverage the precursor signal under
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Model Input Configuration MAE RMSE
Naive Average I 7.128 £0.268  8.855 +0.239
Naive Last I 7.911£0.267 9.941 +0.223
LSTM I Layers=2, Units=32, 32, LR=9.2e-04, BS=16 5.780 £0.278 6.921 +£0.172
FNN TS Units=32, 32, 32, 256, LR=5.6e-04, BS=16 7.174 £0.241 10.316 £+ 0.418
TS+B Units=16, 256, LR=8.4e-04, BS=32 6.292 +0.108  8.903 £ 0.406
LSTM TS Units=64, 64, LR=9.8e-04, BS=16 4.8944+0.212 7.320 £ 0.338
TS+B Units=128, 64, LR=9.0e-04, BS=16 4.976 +£0.387  7.499 +0.792

Filters=32, 64, 32, KS=3, PS=None
LR=5.4e-04, BS=32
Filters=64, 64, 32, KS=3, PS=None
LR=1.6e-04, BS=16

Filters—16, 32, 16, 32, 32, KS—3,
Dropout=0.196, LR=4.6e-04, BS=16
Filters=16, 16, 32, 16, 32, KS=3,
Dropout=0.389, LR=8.9e-04, BS=16

1D-CNN TS 6.271 £0.191  8.282 £ 0.251

TS+B 5.526 £0.189  7.429 £0.210

TCN TSt 4.795 + 0.227 7.132+0.414

TS+Bf 4.871 4 0.142 7.067 + 0.261

Emb.=64, Attention Heads=16, Enc. Layers=2,
FF=256, Dropout=0.176, LR=3.8¢-04, BS=16
Emb.=128, Attention Heads=2, Enc. Layers=2,
FF=256, Dropout=0.116, LR=2.9¢-04, BS=32

Transformer TS 5.033 £0.206 7.743 £ 0.442

TS+B 4.960 £0.385 7.727 £0.712

Table 3: Results on Synthetic 2 (irregular recurrence with precursors), reported as

mean =+ std. t: early stopping due to time limits. Inputs: TS = raw series; TS+B = binary
mask; I = index encoding of prior motifs. Bold indicates best per input with statistically significant
improvement over baselines.

this setting, despite the stochastic variability of the signals with regard to their
time occurrence. However, none of the models outperformed the LSTM baseline
according to RMSE, suggesting that while average prediction errors decreased,
occasional large deviations still occurred. This highlights the challenge of pre-
dicting motif recurrence in stochastic contexts.

The introduction of explicit motif-positioning information via the TS+B
encoding further improved the performance of the FNN and 1D-CNN architec-
tures, likely by aiding temporal extrapolation between the last observed motif
and the output value. For models already capable of leveraging temporal struc-
ture (e.g., LSTM, TCN), the mask added little or no benefit, suggesting these
architectures could infer motif context without explicit labels.

5.4 Real data results

We evaluate model robustness on two real-world case studies involving complex,
naturally recurring motif structures.

Population density. In this case study, we forecast 12-hour population den-
sity motifs in Lisbon’s Avenidas Novas district. From 27 motifs (avg. 20.61
occurrences each), the five most frequent were selected for evaluation. Table
summarizes the results, with naive models (average and last distance between
contiguous motifs) serving as baselines. The models significantly outperformed
naive baselines in MAE, confirming their ability to capture meaningful popula-
tion density trends.
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Model Input

MAE

RMSE

Naive Average I

12.951 4+ 2.935

15.588 + 3.456

Naive Last I 18.528 +9.754  29.364£13.468
FNN TS 9.336 +1.536  11.408 £ 1.353
TS+B 9.164 + 0.995 11.874 + 1.460
I 11.138 +2.185  13.243 +1.844
LSTM TS 9.793 £ 0.991  12.219 £ 1.060
TS+B 9.472 +£1.478  11.842 £ 1.423
I 9.783 £ 0.996 12.221 4+ 1.044
1D-CNN TS 9.595 +1.534  11.600 £ 1.172
TS+B  11.498 £1.678 13.672 %+ 1.338
I 10.262 + 1.301  12.556 £ 0.866
TCN TS 9.066 £+ 1.954 11.506 + 1.843
TS+B 9.448 +0.981  11.722 £ 0.649
I 9.896 +1.249  12.023 £ 1.253
Transformer TS 11.466 +4.332  14.569 =+ 3.769
TS+B 9.979 +1.524  12.899 £ 1.955

I

10.910 4+ 1.309

12.919 + 1.190

13

Table 4: MAE and RMSE on population density data, reported as mean + std. Inputs:
TS = raw series; TS+B = binary mask; I = index encoding of prior motifs. Bold
indicates best per input with statistically significant improvement over baselines.

Notably, the TCN utilizing time series TS input (p-value = 0.041 vs. Naive
Avg. for MAE), the FNN with the TS+B encoding (p-value = 0.038 vs. Naive
Avg. for MAE), and the LSTM applied to sequences of indices (p-value = 0.047
vs. Naive Avg. for MAE) were identified as the most effective architectures for
their respective input types. These differences suggest that models exploit dif-
ferent input representations depending on architecture.

Figures[3|and [ provide a comparison of motif recurrence predictions from two
models: the FNN model with TS+B input (MAE = 8.090, RMSE = 11.080) and
the TCN model using T'S as input (MAE = 5.966, RMSE = 9.553). The first mo-
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Fig.3: (a) Visualization of a 12-hour motif found on the population density
data from Avenidas Novas, Lisbon. The red dashed lines indicate motif oc-
currences. (b) Predictions of the FNN regression model with TS+B as input
vs. the true values, where the red dashed line represents the ideal y = z fit.
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Fig.4: (a) Visualization of a 12-hour motif found on the population density
data from Avenidas Novas, Lisbon. The red dashed lines indicate motif oc-
currences. (b) Predictions of the TCN regression model with TS as input vs. the
true values, where the red dashed line represents the ideal y = z fit.

tif consists of 38 subsequences, exhibiting a sharp increase in population density
in Avenidas Novas after the second hour, followed by a period of stabilization
at a high density for the remainder of the 12-hour cycle. In contrast, the second
motif is characterized by low population density during the first eight hours,
followed by a rapid increase in the remaining hours. The predictive behaviors
indicate that both models perform more accurately when forecasting short-term
motif recurrences within a 24-hour window, as evidenced by their alignment with
the ideal y=x reference line. However, the models tend to underestimate motif
occurrences farther into the forecast horizon, suggesting difficulties in capturing
long-term dependencies. While self-attention mechanisms have the potential to
improve performance, the transformer-based architecture struggled in this con-
text, likely due to the relatively small dataset size, which may have hindered its
ability to effectively learn meaningful long-range dependencies.

Electricity consumption. This study analyzes motifs in household power us-
age, with 19 recurring 2-hour patterns (avg. 219.47 occurrences each). Table
presents the predictive performance of various models across different input en-
coding schemes, using the same naive distance criteria as baselines.

Regarding predictive errors, all models outperformed the naive baselines in
both MAE and RMSE, demonstrating their ability to capture meaningful pat-
terns in household electricity usage. The LSTM trained with index-based encod-
ing achieved the lowest MAE (30.8) and one of the lowest RMSE values (41.0).
Among models using TS input, the TCN exhibited the lowest prediction errors
(MAE = 32.2, RMSE = 41.6); showing statistically significant improvements on
RMSE against the Naive Average (p-value=0.036 for RMSE, p-value=0.114 for
MAE). The Transformer model trained with index encoding achieved the lowest
RMSE overall (40.9), but its results were not statistically significant compared
to other non-baseline models using the same input.
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Model Input MAE RMSE
Naive Average I 37.435+14.656 48.206+£17.560
Naive Last 1 40.447 £+ 9.781 53.754+11.480
FNN TS 34.523 + 9.854 44.126+12.094

TS+B 33.268 + 8.641 45.107+£13.095
I 31.844 + 7.135 42.039+10.101
LSTM TS 32.419 + 8.289 41.870+£13.081
TS+B 31.152 4+ 7.897  40.939+12.982
1 30.800 + 8.553 40.969+13.619
1D-CNN TS 32.804 + 8.355  42.6314+12.451
TS+B 35.722+10.876 45.666+12.941
I 31.926 + 7.438  42.335+11.360
TCN TS 32.181 + 8.359 41.624+12.402
TS+B 32.558 + 8.320 46.219+12.811
1 31.660 + 7.808 42.333+13.360
Transformer TS 33.431 + 8.797 43.784+12.701
TS+B 32.243 +9.170 42.731+£12.872

I

31.987 £ 6.727

40.922 + 8.333

Table 5: MAE and RMSE on household electricity data, reported as mean =+ std.
Inputs: TS = raw series; TS+B = binary mask; I = index encoding of prior motifs.
Bold indicates best per input with statistically significant improvement over baselines.

6 Conclusions and future work

This work introduces and formalizes the task of predicting the next occurrence
of a (non-periodic) multidimensional motif, and outlines methodological prin-
ciples to address it. The approach leverages neural models to uncover complex
recurrence dynamics and identify precursor signals in the data that anticipate
future motif instances. Mask-based encodings are proposed to integrate motif re-
currence and pattern information into the raw multivariate time series, serving
as structured inputs for supervised regression.

To explore the three guiding research questions, we conducted experiments
on both synthetic and real-world datasets, showing that different architectures
are better suited for different conditions: LSTM models excel under non-trivial
recurrence, while TCNs and Transformers perform better when precursor signals
are predictive. These findings highlight the importance of architectural alignment
with the temporal nature of motif recurrence.

This work lays a foundation for forecasting critical events in real-world sys-
tems, with applications ranging from organ failure and financial volatility to at-
mospheric risks and traffic anomalies. Future directions include: i) incorporating
both historical and forward-looking context to enhance event forecasting [29]; ii)
deeper analysis of the recurrence dynamics behind irregular motifs; iii) evaluate
the robustness of the proposed methods under varying levels of noise, precursor
signal strengths, and missing rates; iv) evaluating the added predictive value of
explicitly modeling upcoming motif occurrences; and v) exploring multi-input
learning, where raw time series, recurrence masks, and index sequences are pro-
cessed as separate input branches rather than merged into a single multivariate
series.



16

M.G. Silva et al.

Acknowledgments. This work was supported by Fundacao para a Ciéncia e a Tec-
nologia (FCT) through FRAIL project, ref. 2024.07266.IACDC; LAIfeBlood+ project,

ref.

2024.07475.IACDC; LASIGE Research Unit, ref. UID/000408,/2025 - LASIGE;

INESC-ID pluriannual, ref. UIDB/50021/2020; and the PhD research scholarship with
ref. UIBD/153086,/2022 to Miguel G. Silva.

Disclosure of Interests. The authors have no competing interests to declare.

Code Availability The code used in this study is available at https://github.com/
MiguelGarcaoSilva/motifpred.

References

(1]

2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

(10]

(1]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparam-
eter optimization framework. In: SIGKDD International Conference on Knowledge Discovery
& Data Mining. pp. 2623-2631. ACM (2019). https://doi.org/10.1145/3292500.3330701
Allred, C., Pusey, J.L., Harper, M.: Detecting ballistic motions in quadruped robots: A boosted
tree motif classifier for understanding reinforcement learning. In: International Conference on
Robotic Computing. pp. 143-151. IEEE (2023). https://doi.org/10.1109/IRC59093.2023.00032
Bahri, O., Li, P., Boubrahimi, S.F., Hamdi, S.M.: Shapelet-based temporal association rule
mining for multivariate time series classification. In: IEEE International Conference on Big
Data. pp. 242-251. IEEE (2022). https://doi.org/10.1109/BIGDATA55660.2022.10020478
Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks.
Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4) (2017). https://doi.org/10.
1063/1.4979282

Biirger, R., Chowell, G., Lara-Diaz, L.Y.: Measuring differences between phenomenologi-
cal growth models applied to epidemiology. Mathematical Biosciences 334, 108558 (2021).
https://doi.org/10.1016/j.mbs.2021.108558

Castanho, E.N., Aidos, H., Madeira, S.C.: Biclustering fmri time series: a comparative study.
BMC bioinformatics 23(1), 192 (2022). https://doi.org/10.1186/512859-022-04733-8

Castro, N.F., Azevedo, P.J.: Significant motifs in time series. Statistical Analysis and Data
Mining: The ASA Data Science Journal 5(1), 35-53 (2012). https://doi.org/10.1002/SAM.11134
Cheng, H., Tan, P., Potter, C., Klooster, S.A.: Detection and characterization of anomalies in
multivariate time series. In: STAM International Conference on Data Mining, SDM. pp. 413-424.
SIAM (2009). https://doi.org/10.1137/1.9781611972795.36

Deep, A., Veeramani, D., Zhou, S.: Event prediction for individual unit based on recurrent
event data collected in teleservice systems. IEEE Transactions on Industrial Informatics 69(1),
216-227 (2020). https://doi.org/10.1109/TR.2019.2909471

Ferreira, P.G., Azevedo, P.J., Silva, C.G., Brito, R.M.M.: Mining approximate motifs in time
series. In: Discovery Science. Lecture Notes in Computer Science, vol. 4265, pp. 89-101. Springer
(2006). https://doi.org/10.1007/11893318_12

He, Y., Chu, X., Peng, J., Gao, J., Wang, Y.: Motif-based rule discovery for predicting real-
valued time series. CoRR abs/1709.04763 (2017), http://arxiv.org/abs/1709.04763

Hébrail, G., Berard, A.: Individual household electric power consumption (08 2012). https:
//doi.org/10.24432/C58K54

Jin, C., Song, C., Bjelland, J., Canright, G., Wang, D.: Emergence of scaling in complex sub-
stitutive systems. Nature human behaviour 3(8), 837-846 (2019). https://doi.org/10.1038/
s41562-019-0638-y!

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

La Rovere, M.T., Bigger, J.T., Marcus, F.I., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity
and heart-rate variability in prediction of total cardiac mortality after myocardial infarction.
The Lancet 351(9101), 478-484 (1998)

Lamp, J., Derdzinski, M., Hannemann, C., Hatfield, S., van der Linden, J.: Motifdisco: Motif
causal discovery for time series motifs. CoRR abs/2409.15219 (2024). https://doi.org/10.
48550/ARXIV.2409.15219

Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for
action segmentation and detection. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 1003-1012. IEEE Computer
Society (2017). https://doi.org/10.1109/CVPR.2017.113

Li, Y., Lin, J., Oates, T.: Visualizing variable-length time series motifs. In: International Con-
ference on Data Mining. pp. 895-906. SIAM / Omnipress (2012). https://doi.org/10.1137/1.
9781611972825.77


https://github.com/MiguelGarcaoSilva/motifpred
https://github.com/MiguelGarcaoSilva/motifpred
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/IRC59093.2023.00032
https://doi.org/10.1109/IRC59093.2023.00032
https://doi.org/10.1109/BIGDATA55660.2022.10020478
https://doi.org/10.1109/BIGDATA55660.2022.10020478
https://doi.org/10.1063/1.4979282
https://doi.org/10.1063/1.4979282
https://doi.org/10.1063/1.4979282
https://doi.org/10.1063/1.4979282
https://doi.org/10.1016/j.mbs.2021.108558
https://doi.org/10.1016/j.mbs.2021.108558
https://doi.org/10.1186/S12859-022-04733-8
https://doi.org/10.1186/S12859-022-04733-8
https://doi.org/10.1002/SAM.11134
https://doi.org/10.1002/SAM.11134
https://doi.org/10.1137/1.9781611972795.36
https://doi.org/10.1137/1.9781611972795.36
https://doi.org/10.1109/TR.2019.2909471
https://doi.org/10.1109/TR.2019.2909471
https://doi.org/10.1007/11893318\_12
https://doi.org/10.1007/11893318_12
http://arxiv.org/abs/1709.04763
https://doi.org/10.24432/C58K54
https://doi.org/10.24432/C58K54
https://doi.org/10.24432/C58K54
https://doi.org/10.24432/C58K54
https://doi.org/10.1038/s41562-019-0638-y
https://doi.org/10.1038/s41562-019-0638-y
https://doi.org/10.1038/s41562-019-0638-y
https://doi.org/10.1038/s41562-019-0638-y
https://doi.org/10.48550/ARXIV.2409.15219
https://doi.org/10.48550/ARXIV.2409.15219
https://doi.org/10.48550/ARXIV.2409.15219
https://doi.org/10.48550/ARXIV.2409.15219
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1137/1.9781611972825.77
https://doi.org/10.1137/1.9781611972825.77
https://doi.org/10.1137/1.9781611972825.77
https://doi.org/10.1137/1.9781611972825.77

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

38]

(39]

[40]

The Next Motif: Forecasting Motif Recurrence Dynamics 17

Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., Zhou, M.: Efficient motif discovery for large-scale
time series in healthcare. IEEE Transactions on Industrial Informatics 11(3), 583-590 (2015).
https://doi.org/10.1109/TII.2015.2411226

Lu, W., Li, J.,, Wang, J., Qin, L.: A cnn-bilstm-am method for stock price prediction.
Neural Computing and Applications 33(10), 4741-4753 (2021). https://doi.org/10.1007/
S00521-020-05532-7

Lu, Y., Wu, R., Mueen, A., Zuluaga, M.A., Keogh, E.J.: Matrix profile XXIV: scaling time
series anomaly detection to trillions of datapoints and ultra-fast arriving data streams. In:
SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 1173-1182. ACM (2022).
https://doi.org/10.1145/3534678.3539271

Martinez-Alvarez, F., Lora, A.T., Riquelme, J.C., Aguilar-Ruiz, J.S.: Discovery of motifs to
forecast outlier occurrence in time series. Pattern Recognition Letters 832(12), 1652-1665 (2011).
https://doi.org/10.1016/J.PATREC.2011.05.002

Minnen, D., Jr., C.L.I., Essa, I.A., Starner, T.: Detecting subdimensional motifs: An efficient
algorithm for generalized multivariate pattern discovery. In: International Conference on Data
Mining. pp. 601-606. IEEE Computer Society (2007). https://doi.org/10.1109/ICDM.2007 .52
Mueen, A.: Time series motif discovery: dimensions and applications. WIREs Data Mining and
Knowledge Discovery 4(2), 152-159 (2014). https://doi.org/10.1002/WIDM.1119

Mueen, A., Keogh, E.J.: Online discovery and maintenance of time series motifs. In: Inter-
national Conference on Knowledge Discovery and Data Mining. pp. 1089-1098. ACM (2010).
https://doi.org/10.1145/1835804.1835941

Nassif, A.B., Talib, M.A., Nasir, Q., Dakalbab, F.M.: Machine learning for anomaly detection:
A systematic review. Ieee Access 9, 78658-78700 (2021). https://doi.org/10.1109/ACCESS.2021.
3083060

Neves, F., Finamore, A.C., Henriques, R.: Efficient discovery of emerging patternsin heteroge-
neous spatiotemporal data from mobile sensors. In: MobiQuitous 2020-17th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. pp. 158—
167. ACM (2020). https://doi.org/10.1145/3448891 . 3448949

Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion anal-
ysis for interpretable time series forecasting. In: International Conference on Learning Repre-
sentations, ICLR. OpenReview.net (2020). https://doi.org/10.48550/arXiv.1905.10437

Palet, J., Manquinho, V., Henriques, R.: Multiple-input neural networks for time series fore-
casting incorporating historical and prospective context. Data Mining and Knowledge Discovery
38(1), 315-341 (2024). https://doi.org/10.1007/S10618-023-00984-Y

Pradeepkumar, D., Ravi, V.: Financial time series prediction: An approach using motif in-
formation and neural networks. International Journal of Data Science 5(1), 79-109 (2020).
https://doi.org/10.1504/IJDS.2020.109489

Silva, M.G., Madeira, S.C., Henriques, R.: Actionable descriptors of spatiotemporal urban dy-
namics from large-scale mobile data: A case study in lisbon city. Environment and Planning B:
Urban Analytics and City Science 51(8), 1725-1741 (2024)

Simma, A., Jordan, M.I.: Modeling events with cascades of poisson processes. In: UAI 2010,
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. pp. 546—
555. AUAI Press (2010), https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=2139&proceeding_id=26

Torkamani, S., Lohweg, V.: Survey on time series motif discovery. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery 7(2) (2017). https://doi.org/10.1002/WIDM.1199
Truong, C.D., Tin, H.N.,; Anh, D.T.: Combining motif information and neural network for time
series prediction. International Journal of Business Intelligence and Data Mining 7(4), 318-339
(2012). https://doi.org/10.1504/IJBIDM.2012.051734

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in neural information pro-
cessing systems. pp. 5998-6008 (2017), https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract .html

Wang, L., Ren, J., Xu, B., Li, J., Luo, W., Xia, F.: MODEL: motif-based deep feature learning
for link prediction. Transactions on Computational Social Systems 7(2), 503-516 (2020). https:
//doi.org/10.1109/TCSS.2019.2962819

Wong, Y.S., Lee, N.K., Omar, N.: GMFR-CNN: an integration of gapped motif feature rep-
resentation and deep learning approach for enhancer prediction. In: International Confer-
ence on Computational Systems-Biology and Bioinformatics. pp. 41-47. ACM (2016). https:
//doi.org/10.1145/3029375.3029380

Xiong, H., Capurso, D., Sen, S., Segal, M.R.: Sequence-based classification using discriminatory
motif feature selection. PloS one 6(11), e27382 (2011). https://doi.org/10.1371/journal.pone.
0027382

Yankov, D., Keogh, E.J., Medina, J., Chiu, B.Y., Zordan, V.B.: Detecting time series motifs
under uniform scaling. In: International Conference on Knowledge Discovery and Data Mining.
pp. 844-853. ACM (2007). https://doi.org/10.1145/1281192.1281282

Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In: SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 947-956. ACM (2009).
https://doi.org/10.1145/1557019.1557122


https://doi.org/10.1109/TII.2015.2411226
https://doi.org/10.1109/TII.2015.2411226
https://doi.org/10.1007/S00521-020-05532-Z
https://doi.org/10.1007/S00521-020-05532-Z
https://doi.org/10.1007/S00521-020-05532-Z
https://doi.org/10.1007/S00521-020-05532-Z
https://doi.org/10.1145/3534678.3539271
https://doi.org/10.1145/3534678.3539271
https://doi.org/10.1016/J.PATREC.2011.05.002
https://doi.org/10.1016/J.PATREC.2011.05.002
https://doi.org/10.1109/ICDM.2007.52
https://doi.org/10.1109/ICDM.2007.52
https://doi.org/10.1002/WIDM.1119
https://doi.org/10.1002/WIDM.1119
https://doi.org/10.1145/1835804.1835941
https://doi.org/10.1145/1835804.1835941
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1145/3448891.3448949
https://doi.org/10.1145/3448891.3448949
https://doi.org/10.48550/arXiv.1905.10437
https://doi.org/10.48550/arXiv.1905.10437
https://doi.org/10.1007/S10618-023-00984-Y
https://doi.org/10.1007/S10618-023-00984-Y
https://doi.org/10.1504/IJDS.2020.109489
https://doi.org/10.1504/IJDS.2020.109489
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2139&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2139&proceeding_id=26
https://doi.org/10.1002/WIDM.1199
https://doi.org/10.1002/WIDM.1199
https://doi.org/10.1504/IJBIDM.2012.051734
https://doi.org/10.1504/IJBIDM.2012.051734
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/TCSS.2019.2962819
https://doi.org/10.1109/TCSS.2019.2962819
https://doi.org/10.1109/TCSS.2019.2962819
https://doi.org/10.1109/TCSS.2019.2962819
https://doi.org/10.1145/3029375.3029380
https://doi.org/10.1145/3029375.3029380
https://doi.org/10.1145/3029375.3029380
https://doi.org/10.1145/3029375.3029380
https://doi.org/10.1371/journal.pone.0027382
https://doi.org/10.1371/journal.pone.0027382
https://doi.org/10.1371/journal.pone.0027382
https://doi.org/10.1371/journal.pone.0027382
https://doi.org/10.1145/1281192.1281282
https://doi.org/10.1145/1281192.1281282
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122

18

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

M.G. Silva et al.

Yeh, C.M., Kavantzas, N., Keogh, E.J.: Matrix profile VI: meaningful multidimensional motif
discovery. In: International Conference on Data Mining. pp. 565-574. IEEE Computer Society
(2017). https://doi.org/10.1109/ICDM.2017.66

Yeh, C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh,
E.J.: Matrix profile I: all pairs similarity joins for time series: A unifying view that includes
motifs, discords and shapelets. In: International Conference on Data Mining. pp. 1317-1322.
IEEE Computer Society (2016). https://doi.org/10.1109/ICDM.2016.0179

Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network
architectures. Neural Comput. 31(7), 1235-1270 (2019). https://doi.org/10.1162/NECO_A_01199
Zhang, D., Kabuka, M.R.: Combining weather condition data to predict traffic flow: A
GRU based deep learning approach. In: Intl Conference on Dependable, Autonomic and Se-
cure Computing. pp. 1216-1219. IEEE Computer Society (2017). https://doi.org/10.1109/
DASC-PICOM-DATACOM-CYBERSCITEC.2017.194

Zhang, Q., Lipani, A., Kirnap, O., Yilmaz, E.: Self-attentive hawkes process. In: Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Proceedings of Machine Learning Research, vol. 119, pp. 11183-11193. PMLR (2020),
http://proceedings.mlr.press/v119/zhang20q.html

Zhao, L.: Event prediction in the big data era: A systematic survey. ACM Computing Surveys
54(5), 94:1-94:37 (2022). lhttps://doi.org/10.1145/3450287

Zhu, Y., Yeh, C.M., Zimmerman, Z., Kamgar, K., Keogh, E.J.: Matrix profile XI: SCRIMP++:
time series motif discovery at interactive speeds. In: International Conference on Data Mining.
pp. 837-846. IEEE Computer Society (2018). https://doi.org/10.1109/ICDM.2018.00099

Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.M., Funning, G.J., Mueen, A., Brisk, P.,
Keogh, E.J.: Matrix profile II: exploiting a novel algorithm and gpus to break the one hundred
million barrier for time series motifs and joins. In: International Conference on Data Mining.
pp. 739-748. IEEE Computer Society (2016). https://doi.org/10.1109/ICDM.2016.0085
Zimmerman, Z., Kamgar, K., Senobari, N.S., Crites, B., Funning, G.J., Brisk, P., Keogh, E.J.:
Matrix profile XIV: scaling time series motif discovery with gpus to break a quintillion pairwise
comparisons a day and beyond. In: Proceedings of the ACM Symposium on Cloud Computing.
pp. 74-86. ACM (2019). |https://doi.org/10.1145/3357223.3362721


https://doi.org/10.1109/ICDM.2017.66
https://doi.org/10.1109/ICDM.2017.66
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1162/NECO\_A\_01199
https://doi.org/10.1162/NECO_A_01199
https://doi.org/10.1109/DASC-PICOM-DATACOM-CYBERSCITEC.2017.194
https://doi.org/10.1109/DASC-PICOM-DATACOM-CYBERSCITEC.2017.194
https://doi.org/10.1109/DASC-PICOM-DATACOM-CYBERSCITEC.2017.194
https://doi.org/10.1109/DASC-PICOM-DATACOM-CYBERSCITEC.2017.194
http://proceedings.mlr.press/v119/zhang20q.html
https://doi.org/10.1145/3450287
https://doi.org/10.1145/3450287
https://doi.org/10.1109/ICDM.2018.00099
https://doi.org/10.1109/ICDM.2018.00099
https://doi.org/10.1109/ICDM.2016.0085
https://doi.org/10.1109/ICDM.2016.0085
https://doi.org/10.1145/3357223.3362721
https://doi.org/10.1145/3357223.3362721

	The Next Motif: Tapping into Recurrence Dynamics and Precursor Signals to Forecast Events of Interest-0.25cm

