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Abstract. In the shipping industry, fuel consumption and emissions are
critical factors due to their significant impact on economic efficiency and
environmental sustainability. Accurate prediction of ship fuel consump-
tion is essential for further optimization of maritime operations. However,
heterogeneous methodologies and limited high-quality datasets hinder
direct comparison of modeling approaches. This paper makes three key
contributions: (1) we introduce and release a new dataset 4 compris-
ing operational and environmental data from three ships; (2) we define
a standardized benchmark covering tabular regression and time-series
regression (3) we investigate the application of in-context learning for
ship consumption modeling using the TabPFN foundation model - a
first in this domain to our knowledge. Our results demonstrate strong
performance across all evaluated models, supporting the feasibility of on-
board, data-driven fuel prediction. Models incorporating environmental
conditions consistently outperform simple polynomial baselines relying
solely on vessel speed. TabPFN slightly outperforms other techniques,
highlighting the potential of foundation models with in-context learn-
ing capabilities for tabular prediction. Furthermore, including temporal
context improves accuracy.

Keywords: Ship fuel consumption · Tabular regression · Time-series regression
· In-context learning · TabPFN

1 Introduction

In the shipping industry, fuel consumption and emissions are key performance
indicators with far-reaching economic and ecological consequences. Fuel con-
sumption accounts for nearly 50 % of a voyage’s total operational costs [20],
while the maritime sector contributes approximately 3 % to global anthropogenic
⋆ These authors contributed equally to this work.
4 https://huggingface.co/datasets/krohnedigital/FuelCast



2 J. Viga et al.

greenhouse gas emissions [14]. With stricter international regulations and rising
climate concerns, reducing emissions has become a strategic imperative. Accu-
rate fuel consumption prediction plays a central role in this context, enabling
optimized routing, operational planning, and emissions estimation. However, pre-
dictive modeling in maritime settings faces fundamental challenges: data scarcity,
high variability, and the lack of standardized benchmarks.

Approaches to fuel optimization vary widely, encompassing physical mod-
els based on domain knowledge, statistical modeling, and data-driven machine
learning methods, each with different priorities, assumptions, and data needs.
This diversity complicates comparisons and limits reproducibility. Standardized
benchmarking for temporal data is crucial to consistently evaluate and compare
models.

Although some publicly available datasets exist [17], [19] they are typically
limited to a single vessel type, span only short time periods, lack detailed context
data or simulate behavior for limited settings [3]. As a result, they fall short of
supporting robust model evaluation for long-term, generalizable fuel consump-
tion prediction.

Ideally, benchmark datasets for fuel consumption prediction in maritime
transport would span multiple years, cover a diverse fleet of vessels, and include
rich contextual information such as weather conditions, sea states, engine pa-
rameters, operational modes, and route metadata. They would be accurately la-
beled, time-synchronized, and representative of real-world variability across sea-
sons, vessel types, and operational patterns. Furthermore, such datasets would
provide annotations for known anomalies or regime changes.

However, creating such datasets is extremely challenging. Maritime opera-
tional data is often fragmented across stakeholders, stored in proprietary for-
mats, and subject to strict confidentiality constraints. Ensuring data quality
through cleaning, synchronization, and contextualization requires significant do-
main expertise and infrastructure. Additionally, legal and commercial concerns
frequently prevent open publication. As a result, comprehensive, high-quality,
and openly available temporal datasets in the maritime sector remain the ex-
ception.

To address this limitation, we introduce a new benchmark dataset and eval-
uation protocol that aims to support the development and assessment of time
series models, see Figure 1.

Our primary audience is the machine learning research community, with a
focus on temporal modeling in realistic operational settings and enabling cross-
vessel comparisons. The dataset spans multiple vessel types and includes rich
contextual features such as weather data, making it one of the few openly avail-
able resources of its kind.

We evaluate three representative model families with complementary strengths:
CatBoost [7], a gradient boosting method well-suited for structured tabular data;
LSTM [10], a classical deep learning approach for sequence data; and TabPFN
[11], a pretrained probabilistic transformer designed to generalize across tabu-
lar tasks without fine-tuning. Additionally, we include simple baselines such as
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Fig. 1: FuelCast benchmark: We create a contextual rich benchmark dataset from
operational data of three ships and environmental data. We define timeseries
regression tasks for fuel consumption prediction and an evaluation setup. From
the models that we apply, with in-context learning model TabPFN for the first
time in this domain, TabPFN outperforms other models.

polynomial regression and a multilayer perceptron (MLP) [9] for selected tasks
to provide reference points for model complexity and data efficiency. This setup
allows us to investigate a central question: Is successful fuel consumption mod-
eling primarily dependent on large-scale supervised training, or can pretrained
foundation models offer strong performance even with limited data? We deliber-
ately omit standard Transformer architectures, as their typical reliance on large
datasets and tuning budgets contrasts with our focus on practical, data-efficient
approaches.

In this work, we contribute

1. A new long-term timeseries dataset comprising operational and environmen-
tal data from three ships

2. A structured evaluation protocol across two time series regression tasks, and
3. Apply in-context learning using the TabPFN foundation model, which, to the

best of our knowledge, has not yet been applied in maritime fuel prediction
and represents a novel approach to modeling low-data and complex tabular
tasks.

Our dataset and tasks are intended to support research in representation
learning, forecasting, and explainable modeling for temporal data in energy-
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intensive domains. By releasing them publicly, we aim to foster exchange be-
tween machine learning and maritime communities, and to provide a realistic
foundation for developing and benchmarking new models.

The remainder of this paper is structured as follows: Section 2 reviews related
work. Section 3 introduces the vessels, describes the dataset, and outlines the
benchmark setup, including tasks, models, and evaluation protocol. Section 4
presents the experimental results. Section5 discusses findings and limitations.
Finally, Section 6 concludes the paper.

2 Related Work

2.1 Data Sets

Public datasets of operational ships with high-frequency, long-term data are
rare. Authors of [17] provide two months of high-resolution ferry data, including
wind sensor measurements. Authors of [19] published one-month datasets for
three fishing vessels at one-minute intervals, with detailed ship operational and
wind data. While authors of [3] provide a simulated dataset for one ship under
different weather conditions. To our knowledge, our three datasets are the first
to offer long-term, high-resolution operational ship data. Unlike [17] and [19], we
also include comprehensive environmental conditions for ships of two different
types. In contrast to [3] our datasets cover real-world long term effects.

2.2 Tasks and Models

Modeling fuel consumption requires features from multiple sources, including
ship sensors, weather, and current data. To capture a contextual representation
of the vessel, we explore both manual feature engineering and neural models
using mostly raw data. On top of these, we apply regression methods.

Regression Linear regression and similar models [22], [5], ensemble methods [25],
SVM [8], [1] and ANNs [16], [25], [1] have been widely studied for fuel consump-
tion prediction. We implement a simple third-order polynomial regression model
motivated by the admiralty coefficient commonly used in ship performance anal-
ysis.

Ridge and Lasso regression [21] are limited in modeling non-linearities, moti-
vating the use of gradient boosting methods such as CatBoost [7], which handle
outliers well and are less prone to overfitting.

Neural Networks and Time-Aware Models Some approaches explicitly incorpo-
rate time, e.g., by splitting data into non-overlapping windows [16]. LSTMs have
been applied to predict engine speed and fuel consumption [24], [15]. Authors of
[13] use transformer-based approaches to predict main and auxiliary engine fuel
consumption. Authors of [2] apply LSTMs for multi-step prediction.

Multilayer Perceptrons (MLPs) can approximate complex non-linear func-
tions but do not model temporal dependencies and often require regularization
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and large datasets [9]. Time series forecasting traditionally builds on autore-
gressive models, where future values are predicted based on past observations.
These approaches motivate the use of lag features and moving windows in non-
sequential models. To learn temporal dependencies directly, we employ Long
Short-Term Memory Networks (LSTMs) [10], which capture both short- and
long-term patterns through internal memory states and are well-suited for mul-
tivariate time series prediction. Most recently authors of [12] introduced a foun-
dation model for tabular regression at test-time compute. It enables fast re-
gression without hyperparameter tuning and outperforms classical methods for
many datasets [11]. To our best knowledge, we are the first, investigating test-
time-compute/in-context learning methods for fuel consumption prediction on
ships.

2.3 Benchmarks

To our best knowledge, we provide the first comprehensive benchmark for fuel
consumption prediction using ships and their operational context. Few methods
[13], [18] use public datasets [19], [17]. However, prior work lacks rigorous method
comparison.

Fuel Oil Consumption Prediction Fuel consumption prediction models in ship-
ping are typically based on physical principles, data-driven methods, or both.
They commonly use noon reports, automatic identification system (AIS) data,
onboard sensors, and contextual information like maintenance records and en-
vironmental conditions. However, prior work is highly heterogeneous in terms
of data quality, sources, and modeling approaches. For instance, [8] combine
high-frequency sensor data from two container ships with external weather data
from Copernicus Marine and ECMWF, achieving best results using a rich fea-
ture set including vessel-relative wind and current information. While our data
construction is similar, we construct and publish higher-resolution datasets and
use them primarily for rigorous method comparison rather than single-model
performance. Other studies vary in scale and scope: Authors of [22] use oper-
ational and mechanical data from many voyages; authors of [16] and [18] rely
on data from a single tanker or ferry; and some, like authors of [5] and [6], in-
corporate additional factors such as hull cleaning. Models are typically applied
either to individual vessels or aggregated across fleets. Target variables also differ
widely—from hourly fuel consumption to per-voyage or engine-specific predic-
tions [23], [1], [13]. While some works propose evaluation frameworks [1], [4],
consistent comparison remains difficult due to the lack of public datasets, vary-
ing experimental setups, and inconsistent prediction targets.

In contrast, our benchmark addresses these limitations by providing publicly
available, long-term high-resolution datasets with a unified comparison frame-
work. We define fixed tasks and targets relevant to real-world shipping operations
and apply a diverse set of machine learning models, including, uniquely in this
domain, test-time compute methods. Our datasets span multiple vessel types,
enabling systematic evaluation of model generalization across ships.
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3 The FuelCast Benchmark

This section provides an overview of our benchmark setup. First, we introduce
the three vessels and explain the construction of our datasets. Note that ship
names are completely anonymized. Next, we derive the tasks we consider
and briefly introduce the machine learning models we apply in our experiments.
Finally, we describe our benchmark setup and the experiments we conduct in
more detail for each task and model.

3.1 Ships

We provide data for the following three ships, see also Table 1: A small cruise
passenger ship CPS Triton, a large cruise passenger ship CPS Poseidon and an
offshore supply ship OSS Ceto.

Table 1: Overview of the ships and corresponding datasets. We provide data from
three ships with different sizes and types to compare the domain generalization
performance of the models.

Ship Type Gross Tonnage # Samples Missing Values

CPS Triton Cruise Passenger Ship 11,000 25,351 0.04 %
CPS Poseidon Cruise Passenger Ship 70,000 105,422 3.2 %
OSS Ceto Offshore Supply Ship 24,000 43,213 0.96 %

The CPS Triton is a cruise passenger ship that operates on a fixed several-day
route. She is powered by two diesel engines with a straight shaft to the propellers.
For this ship we provide three months of data.

The CPS Poseidon is a cruise passenger ship with an area of operation that is
more diverse and has a strong seasonality. She has a diesel-electric propulsion
system with five generator engines and a straight shaft to the propellers from
electric motors. We provide 12 months of data.

The OSS Ceto is a ship that supports deep sea operations. Her operation profile
is very different compared to the cruise passenger ships with many short maneu-
vering sections. She has intervals of dynamic positioning where the engines are
active to work against ocean currents and winds to keep her at a fixed position.
She has thruster pods with electric motors that are powered by diesel generators.
We provide 6 months of data.
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3.2 Datasets

For the construction of our datasets, one for each vessel, we consider operational
ship data and environmental data. In the following, we also use the vessels name
to refer to the corresponding dataset. We integrate the two data sources by time
and position. Table 2 shows the data used in our experiments.

Ship-Specific Data By ship-specific data we refer to data produced by all pro-
cesses directly connected to the ship itself. The data is collected by onboard
sensors with a sample rate of five minutes. It contains information about speed,
the ship’s heading or bearing and detailed consumption data per consumer.
Each ship has multiple consumers that contibute to the total momentary fuel
consumption. These can be engines for propulsion and power generation or other
consumer like boilers and incinerators. For the measurement of consumption we
use accurate KROHNE Coriolis mass flowmeters. For each engine we measure
inlet and outlet and combine these using the difference to calculate exact con-
sumption.

Sea- and Weather Data The sea and weather condition data includes sea tem-
perature, depth and current as well as details on wind, waves and external tem-
perature. We use satellite data provided by Copernicus Marine5 (sea floor depth)
and Open-Meteo [26]. The data points are provided on a coarse coordinate grid
with a sample rate of one hour.

Integrating Data Sets We integrate ship operational data and weather and sea
condition data by time and position. Since the time and position resolution for
the two data sources differs, we first linearly interpolate the weather and sea
condition data to get data on a finer time and coordinate grid. Once we have
5-minute resolution weather and sea condition data, we integrate the data from
both sources by time and position.

General Preprocessing Due to measurement errors and missing weather data
points close to the shore missing values can occur. For the OSS Ceto and the
CPS Triton, we observed a percentage of missing values between 0.06% and
0.2% and for CPS Poseidon between 0.2% and 2%. Most missing values occured
for bearing while we do not observe missing values for the target value. We
apply column-wise mean imputation to handle missing data. All features are
normalized using a standard scaler. Directional features (wind, wave, and ocean
current directions) are transformed into the vessel’s local coordinate system by
subtracting the vessel’s bearing.

3.3 Tasks

We propose two tasks, both aiming to predict the total fuel consumption of a
single vessel. We consider a tabular regression task and a time-based regression
task.
5 https://marine.copernicus.eu
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Table 2: Overview of variables from the datasets that we use in our experiments
including the name, a short description, source and the unit. Momentary fuel
and speed over ground are integrated by position and time with the sea floor
depth information from Copernicus Marine and the historical weather data from
Open-Meteo. For the experiments we transform directional features relative to
the ship.

Variable Description Source Unit

Total.MomentaryFuel Total momentary fuel consumption
of all consumers on the vessel.

Flowmeter kg/s

SpeedOverGround Speed over ground of the vessel. GPS m/s
SeaFloorDepth Sea floor depth below sea level

(bathymetry).
Copernicus Marine m

WindDirection10M Wind direction at 10 meters above
ground.

Open-Meteo ◦

WindSpeed10M Wind speed at 10 meters above
ground.

Open-Meteo m/s

OceanCurrentDirection Ocean current direction considering
all components.

Open-Meteo ◦

OceanCurrentVelocity Ocean current velocity considering
all components.

Open-Meteo m/s

WaveDirection Mean direction of significant waves. Open-Meteo ◦

WaveHeight Significant mean wave height. Open-Meteo m
WavePeriod Period between significant waves. Open-Meteo s
Temperature2M Air temperature 2 meters above

ground.
Open-Meteo ◦C

Task 1: Tabular Regression For this task we consider the classical supervised
learning regression task. Given a set of inputs X, predict a real-valued variable
y. In the given case X is a subset of ship operational data and environmental
condition data and y the total fuel consumption.

This scenario represents a pointwise prediction based solely on features ob-
served at a single time step, without incorporating temporal context. It abstracts
the vessel’s dynamic behavior under the assumption that the dominant influenc-
ing factors are stationary or sufficiently reflected in the instantaneous measure-
ments. This task is relevant for assessing how operational parameters such as
engine load or vessel speed affect fuel consumption and can support decisions in
steady cruising conditions.

Task 2: Timeseries Regression Predict yt from current and past inputs xt, ..., xt−k

with window T:
yt = f(xt, xt−1, .., xt−k) + ϵt (1)

where f(.) is a function that describes the model, ϵt an error term and 1 ≤ k ≤ T .
For example, yt is the fuel consumption and xt−k describes the collection of speed
and wind k observations before t.
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This setting relaxes the stationarity assumption of task 1 by incorporating
recent temporal context from the ship and its surrounding environment. Includ-
ing historical input patterns enables the model to learn dynamic behavior, such
as acceleration phases or maneuvering. It is particularly valuable for analyzing
fuel consumption across complete voyages and for understanding the influence
of short-term transitions on vessel performance.

3.4 Benchmark Setup

Feature Selection We select the input features based on physical knowledge and
manual feature importance analysis. The input features are SpeedOverGround,
SeaFloorDepth, Temperature2M, OceanCurrentVelocity, OceanCurrentDirection
(transformed to local vessel coordinates), WindSpeed10M, WindDirection10M
(transformed to local vessel coordinates), WaveHeight, WavePeriod, WaveDirec-
tion (transformed to local vessel coordinates). As target variable, we use the
vessel’s total momentary fuel consumption.

Data Split We segment the dataset into 5 disjoint temporal intervals of equal
length, assuming each interval represents an independent realization of vessel
behavior (i.i.d. assumption across intervals). This assumption ignores slow non-
stationarities such as seasonal variations or gradual changes due to hull fouling,
and instead treats the system as Markovian, i.e. as a physical process that is fully
determined by its current state, which can be inferred from a short history of past
observations. These intervals form the basis of a 5-fold cross-validation scheme.
We construct batches from each interval that are derived from the scenario of
the task. Task 1 requires no special treatment. For task 2, we set the context size
to T = 11. Together with the observation at time t, we get 1 hour windows. We
take a sliding window approach with a stride of 1 to create the final batches. For
each cross-validation run, we take one of the intervals as a test set and combine
the batches of the remaining intervals to form the training set. This procedure
ensures that the temporal structure within intervals is preserved, while avoiding
leakage across folds.

Metrics We evaluate the performance of our models using the mean average
error (MAE) to calculate the error and R² to calculate how well the variance
within the data has been captured by the model.

3.5 Models

We evaluate a range of models across the two benchmark tasks to compare simple
baselines, classical machine learning methods, and modern foundation models.

For task 1, we use a third-order polynomial regression model as a speed-
based baseline, motivated by the admiralty coefficient commonly used in ship
performance analysis. Additionally, we include CatBoost, a state-of-the-art gra-
dient boosting method on decision trees, known for its effectiveness on structured
data with heterogeneous features. MLPs are included as a standard deep learning
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baseline due to their universal function approximation capability and widespread
use in regression tasks, providing a reference point for evaluating the added value
of more specialized architectures. Finally, we evaluate TabPFN, a transformer-
based foundation model designed for tabular data, to explore the feasibility of
in-context learning for ship fuel prediction without task-specific training.

For task 2, we evaluate CatBoost, LSTM, and TabPFN. CatBoost is extended
with lag-based features such as the mean vessel acceleration and the rate of
change in sea floor depth to represent temporal dependencies in a static feature
format. For task 2, we evaluate CatBoost, LSTM, and TabPFN. CatBoost is
extended with lag-based features such as mean vessel acceleration and the rate
of change in sea floor depth to represent temporal dependencies in a static feature
format. LSTM is included as a standard architecture for time series modeling and
has been applied in related work for predicting engine speed, fuel consumption,
and multi-step trajectories. Its ability to directly learn temporal patterns from
sequential inputs makes it a relevant baseline for this task. TabPFN, originally
designed for tabular data, is evaluated on time series by using the same lagged
feature format as CatBoost, allowing us to assess its ability to model temporal
dynamics without recurrence or attention.

All models are configured consistently for fair comparison. CatBoost uses
internal feature importance for feature selection and a 3-fold grid search for tun-
ing major hyperparameters. MLP is designed with 20 layers of 32 neurons each,
using GELU activations and a final linear output layer. LSTM includes a single
recurrent layer with 128 hidden units. Both MLP and LSTM are trained using
the mean squared error (MSE) loss and the Adam optimizer with a learning rate
of 10−3. Training includes early stopping based on validation loss, with 20% of
the training set reserved for validation. For MLP and LSTM, directional input
features (wind, wave, ocean current) are decomposed into sine and cosine compo-
nents. TabPFN is applied without architectural changes or additional training.
Due to limited computational resources and to evaluate the data efficiency of
TabPFN, we restrict the training context to a randomly selected subset of 500
samples (TabPFN (500)) or 1000 samples (TabPFN (1000)).

4 Results

In this section, we present empirical results addressing the key questions moti-
vating our benchmark design. Specifically, we investigate (i) the role of temporal
context for accurate fuel consumption prediction, (ii) the potential of in-context
learning with foundation models, in particular TabPFN with little data, as a
novel approach in maritime operational settings. (iii) the performance of different
modeling paradigms across tabular and time-series tasks, and (iv) the influence
of environmental conditions, particularly weather, on fuel consumption.

Average Results Over All Vessels When averaging performance across all vessels,
see last column of Tables 3 and 4, clear model hierarchies emerged. TabPFN with
1000 training samples consistently achieved the lowest MAE across all three
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(a) MAE comparison (b) R² comparison

Fig. 2: Comparison of the evaluated models across the two tasks (columns) and
three vessel datasets (rows), showing (a) mean absolute error (MAE) and (b) R².
Values are averaged over 5 cross-validation folds; error bars indicate standard
deviation. TabPFN slightly outperforms the other models in most cases.

tasks, followed by its 500-sample variant. For tasks 1 and 2, CatBoost generally
ranked third behind the two TabPFN variants. For R² scores, MLP led in task 1,
with CatBoost and TabPFN close behind. In task 2, CatBoost showed the highest
R², while TabPFN 500 had the weakest performance.

TabPFN Outperforms Across Vessels and Tasks A high-level analysis of the
benchmark results observed in Figure 2 reveals several consistent trends across
vessels, tasks, and model types. Overall, TabPFN achieves the most robust per-
formance, outperforming other models in most tasks and across all three vessels.
Its advantage is particularly clear when trained on larger datasets (e.g., with
1000 samples), where it consistently achieves the lowest MAE. This suggests
that TabPFN generalizes well across different vessel types and operational con-
ditions, making it a strong candidate for ship fuel consumption prediction tasks.
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Temporal Information Boosts Model Performance The addition of temporal in-
formation through time-based features leads to further improvements in pre-
diction accuracy across most tasks, see trends from left to right plots for the
two metrics in Figure 2. This underlines the importance of capturing dynamic
patterns in vessel behavior and external conditions over time.

Environmental Features Improve Prediction Accuracy The speed-based polyno-
mial baseline consistently underperforms. It fails to capture key external drivers
of fuel consumption. In contrast to models that include environmental variables,
we observe much higher MAE and lower R² in Table 3.

Vessel-Specific Variability in Model Performance Model performance varied no-
tably across the evaluated vessels, with OSS Ceto exhibiting the highest variance
in tasks 1 and 2. This variability likely reflects more complex operational pro-
files, data inconsistencies, or noisier fuel consumption patterns compared to the
cruise passenger ships. CPS Triton consistently shows the lowest prediction er-
rors due to more stable operations resulting from the fixed route. Conversely,
the CPS Poseidon has higher absolute errors despite strong R² scores, indicating
systematic but more complex consumption behavior.

We now investigate the the performance of different models per task.

Task 1: Regression In task 1 we observe in Table 3 in the two bottom rows
that TabPFN consistently achieved the lowest MAE across all vessels. For CPS
Poseidon, it reached 0.061 (1000 samples), ahead of MLP (0.066), CatBoost
(0.068), and the polynomial baseline (0.086). R² values among the top models
ranged from 0.93 to 0.94. On the CPS Triton, TabPFN again led (MAE = 0.019,
R² = 0.859), with CatBoost slightly ahead of MLP, unlike in the large cruise
ship case. For OSS Ceto, TabPFN achieved the best MAE (0.042), though MLP
had the highest R² (0.547). Variance in R² across folds was high, especially for
this vessel, but CatBoost and MLP showed the most stable results. Overall,
TabPFN proved most reliable in minimizing absolute error, while relative model
performance varied by vessel and metric.

Task 2: Timeseries Regression With temporal features included we observe in
Table 4 that TabPFN again performed best on both cruise ships, achieving
the lowest MAE and highest R². LSTM consistently ranked lowest, especially
on the CPS Triton. On OSS Ceto, CatBoost slightly outperformed TabPFN in
both MAE and R², while also showing the most stable results. TabPFN with
500 samples showed the weakest performance on this vessel. LSTM achieved
a relatively high R² here, but with greater variability, indicating potential for
sequence models with further optimization. For OSS Ceto, CatBoost slightly
outperformed TabPFN in terms of MAE (0.041 vs. 0.042), but also showed the
best R² (0.558) with the lowest variance (±0.241). In contrast, TabPFN with 500
samples had the lowest R² (0.445) and the highest variance (±0.47), indicating
reduced stability. The LSTM ranked lower in MAE but achieved a relatively
high mean R² (0.537), though with higher variability.
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Table 3: Results of task 1 (Tabular Regression): Comparison of the evaluated
models in terms of MAE and R² metrics across all three vessel datasets. The val-
ues are averaged over the 5 cross-validation folds. TabPFN slightly outperforms
the other models in most cases.

Model CPS Triton CPS Poseidon OSS Ceto Average

MAE R² MAE R² MAE R² MAE R²

Polynom .027 .687 .085 .909 .044 .472 .052 .689
CatBoost .019 .840 .067 .935 .043 .506 .043 .760
MLP .021 .804 .066 .933 .044 .546 .044 .761
TabPFN (500) .018 .844 .063 .937 .041 .489 .041 .757
TabPFN (1000) .017 .859 .061 .942 .042 .427 .040 .742

Table 4: Results of task 2 (Time-Series Regression): Comparison of the evaluated
models in terms of MAE and R² metrics across the three vessel datasets. The
values are averaged over the 5 cross-validation folds. The error generally improves
compared to task 1. TabPFN slightly outperforms the other models in most cases.

Model CPS Triton CPS Poseidon OSS Ceto Average

MAE R² MAE R² MAE R² MAE R²

CatBoost .017 .867 .064 .940 .041 .557 .041 .788
LSTM .020 .812 .072 .927 .045 .536 .046 .758
TabPFN (500) .017 .869 .062 .940 .042 .445 .040 .751
TabPFN (1000) .016 .878 .059 .947 .041 .515 .038 .780

Summary of Key Findings Across all tasks and vessel types, TabPFN consis-
tently achieved the best performance, particularly when sufficient training data
was available. Including weather and temporal information improved prediction
accuracy, confirming the importance of contextual and sequential features. While
model performance varied by vessel, the CPS Triton showed the lowest errors
overall, and OSS Ceto posed greater modeling challenges due to operational
complexity. These findings provide a clear basis for assessing future methods on
this benchmark.

5 Discussion and Limitations

Temporal Context and Predictive Value The performance improvement from
task 1 to task 2 suggests that incorporating temporal context provides additional
predictive value. This is likely due to the model’s ability to capture acceleration
and deceleration phases, which span multiple observations and significantly affect
fuel consumption. This effect is particularly pronounced in vessels such as CPS
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Triton and OSS Ceto, which operate in short, frequent voyages where transitional
dynamics are more prominent.

Strong Performance of TabPFN Even With Limited Data TabPFN consistently
performed well across all vessel types and on average, even with only 500-1000
training samples, highlighting its suitability for data-scarce time series scenarios.
Its pretrained, inference-time-only architecture suggests that certain temporal
patterns in fuel consumption can be captured without extensive task-specific
training and can be computed directly on the ship. This supports the promise
of foundation models for forecasting in domains like maritime transport, where
labeled data is limited and real-world deployment often demands fast adaptabil-
ity.

Cross-Vessel Generalization and Operational Variability Model performance was
generally consistent across different vessel types, supporting the hypothesis that
shared temporal structures in fuel consumption exist. However, notable devia-
tions, especially for the OSS Ceto stemmed from a single cross-validation fold
with distinct operational behavior. This underlines the need for careful dataset
partitioning and suggests that model evaluation should account for behavioral
regimes rather than just vessel categories.

Limitations Despite the promising results, several limitations should be acknowl-
edged. The datasets, although varied, are relatively small in absolute terms and
focused on two ship types, potentially limiting generalizability. We did not inves-
tigate predictions into the far future. For task 2 we limited our experiments to a
fixed time context. Only a fixed set of model architectures and hyperparameters
were explored. Additional tuning, especially for MLP and LSTM, might improve
results. TabPFN was only trained on a subset of samples due to computational
limitations and we only used simple sampling techniques to select the subset.
Furthermore, only standard regression metrics were considered, without deeper
evaluation of model uncertainty and explainability.

Applications Our framework has several promising applications in the context
of data-driven analysis and decision-making on temporal ship operation data.
It enables simulation of the ship model under arbitrary conditions to perform
optimization of the fuel efficiency. In particular, this allows performing what-if
szenarios with the ship to compare the consumption under different conditions.
Our tests demonstrate that computation for both szenarios can be performed
directly on the ship. In addition, analysts can use the framework to analyse
consumption in the past and identify reasons for overconsumption. Based on the
analysis they can optimize consumption and reduce emissions on future voyages.

Future Work Future work will focus on implementing k-step-ahead prediction
using an autoregressive evaluation setup, particularly with exogenous inputs. K-
step ahead prediction allows a ship operator to forecast fuel consumption over
the next several time steps based on planned actions and expected conditions,



FuelCast: Tabular and Temporal Models for Ship Fuel Consumption 15

enabling more informed decisions than current reactive approaches that rely
solely on present or past data. We also plan to investigate additional model ar-
chitectures such as Informer and TimesNet to evaluate potential improvements
in handling complex temporal dynamics. This includes testing TabPFN with
more samples and improved sample selection. To enhance generalizability, the
approach will be extended to a wider range of vessel types and a larger fleet. Fur-
ther improvements are expected through more effective hyperparameter tuning
and a systematic study of input window size optimization.

6 Conclusion

In this work, we presented a new dataset of operational and environmental time-
series data from three ships and introduced a novel benchmark covering tabular
and time-series regression tasks. Our results show that incorporating temporal
context improves accuracy in some cases. TabPFN slightly outperformed other
models, indicating the potential of in-context learning for ship fuel consumption
prediction. In particular, in-context learning requires only little data to perform
well. We also confirm that fuel consumption is influenced not only by vessel
speed but also by environmental conditions such as weather and sea state.

Overall, our standardized benchmark provides a reproducible basis for eval-
uating temporal regression methods in the maritime domain and demonstrates
the feasibility of modern machine learning - especially foundation models - for
accurate onboard fuel estimation.
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