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Abstract. Temporal knowledge graphs (TKGs) extend traditional
knowledge graphs by incorporating temporal information to represent
time-sensitive facts as quadruples (subject, relation, object, timestamp),
enabling the modeling of dynamic real-world relationships that evolve
over time. However, TKGs from different real-world sources are often
incomplete and contain complementary information. Therefore, Tempo-
ral Entity Alignment (TEA) techniques are needed to integrate knowl-
edge from multiple TKGs by identifying equivalent entities across dif-
ferent temporal knowledge graphs, thereby supporting the consolidation
of knowledge from multiple sources. Although there has been extensive
research on temporal entity alignment, existing approaches suffer from
significant limitations: some methods fail to fully exploit rich semantic
information and contextual background, while others that employ large
language models incur prohibitively high computational costs. To address
these challenges, we propose T3A-LLM, a two-stage triple-information
alignment with large language model (LLM), a novel two-stage frame-
work for TKG alignment that efficiently fuses structural, temporal, and
semantic information. The first stage uses dual-feature encoding (rela-
tion, time) and graph matching for preliminary alignment to a top-n can-
didate set, reducing the search space and addressing LLM computational
overhead. The second stage applies an LLM-Score mechanism for fine-
grained semantic reasoning on the candidates, specifically designed to
capture deep semantic relationships that traditional structural methods
cannot handle. The final scores are obtained by fusing graph-based and
LLM-based similarities. Experiments show that T3A-LLM significantly
outperforms baselines, with ablation studies confirming the necessity of
each component.

Keywords: Temporal Knowledge Graphs - Temporal Entity Align-
ment - LLM - Two-Stage Framework

1 Introduction

Temporal knowledge graphs (TKGs) are fundamental extensions of traditional
knowledge graphs that incorporate temporal information to model dynamic real-
world facts, powering applications in semantic search, recommendation systems,
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and artificial intelligence [4-7]. TKGs represent knowledge as quadruples (sub-
ject, relation, object, timestamp), enabling the capture of time-sensitive rela-
tionships and evolving entity attributes that static knowledge graphs cannot
adequately represent.

However, individual TKGs constructed from different sources are often in-
complete and contain complementary information. This necessitates Temporal
Entity Alignment (TEA) [6-10] - identifying equivalent entities across differ-
ent temporal graphs while considering their temporal contexts and evolution
patterns to create more comprehensive knowledge repositories [36,37]. This be-
comes particularly complex with TKGs, as the temporal dimension introduces
new challenges where methods must consider time-sensitive relationships and
evolving entity attributes.

Existing temporal entity alignment research has explored various approaches
to address these challenges. Methods like TEA-GNN integrate temporal informa-
tion through temporal relational attention mechanisms [13], while TAlign lever-
ages neighborhood distance awareness for temporal entity alignment [10, 12].
Other approaches include embedding-based methods for cross-lingual tempo-
ral knowledge graphs [5,11], relation-enhanced models that utilize dual-encoder
architectures [4, 6], and active learning strategies for improved alignment effi-
ciency [9]. However, these approaches face common limitations: while they in-
corporate semantic information from entity attributes and contextual descrip-
tions, the utilization of such semantic information remains insufficient, and they
often struggle to effectively integrate multi-dimensional information sources for
comprehensive alignment decisions.

The importance of semantic information in entity alignment has become in-
creasingly recognized, as entity names, descriptions, and attributes provide cru-
cial disambiguation signals that structural patterns alone cannot capture. Re-
cent advances in LLMs have demonstrated remarkable capabilities in semantic
understanding and reasoning, offering new opportunities for entity alignment
tasks [38-40]. Recent studies have leveraged LLM for entity alignment due to
their semantic understanding capabilities [2,3,20]. LLMEA integrates structural
knowledge from KGs with semantic knowledge from LLMs through relation-
aware graph attention networks and multi-choice question answering [3]. ChatEA
introduces a KG-Code translation module that converts graph structures into
LLM-comprehensible formats through a two-stage strategy [2]. However, these
existing approaches utilizing LLMs for alignment tasks remain in preliminary
stages regarding the collaborative utilization of semantic, structural, and tem-
poral information. Therefore, there is significant potential to develop more so-
phisticated frameworks that can effectively integrate these multi-dimensional
information sources with LLM capabilities.

To address these limitations, we propose two-stage triple-information align-
ment with large language model (T3A-LLM), a novel two-stage framework that
strategically combines the computational efficiency of GNNs with the seman-
tic reasoning power of LLMs specifically designed for temporal knowledge graph
alignment. Our approach employs a dual-feature encoding mechanism that sepa-
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rately captures temporal dynamics and relational structures, followed by a graph

matching stage that generates a probability matrix to identify top-n candidate

pairs. Subsequently, an LLM-based scoring mechanism performs fine-grained

semantic reasoning on these candidates, with final alignment decisions made

through adaptive fusion of structural-temporal and semantic similarity scores.
The key contributions of this paper are as follows:

— Two-Stage Alignment Framework: We propose a computationally effi-
cient approach that combines GNNs for preliminary alignment and LLMs
for semantic refinement, balancing performance and scalability specifically
for temporal knowledge graphs.

— Multi-Dimensional Information Fusion: The framework systematically
integrates three critical types of information-temporal dynamics, structural
relationships, and deep semantic understanding obtained through LLM-based
reasoning and inference of original entity, attribute, and relation information-
through dual-feature encoding and adaptive fusion techniques to enhance
alignment accuracy in temporal settings.

— Empirical Validation: We conduct extensive experiments on both temporal-
dominant and semantic-dominant datasets, demonstrating that T3A-LLM
outperforms state-of-the-art baselines and existing LLM-based approaches.

The remainder of this paper is organized as follows: Section 2 reviews related
work. Section 3 details the proposed T3A-LLM framework. Section 4 presents
experimental setups and results analysis. Finally, section 5 discusses limitations
and future work.

2 Related Work

Temporal Entity Alignment. Recent temporal entity alignment research has
explored diverse methodological approaches to address the challenges of align-
ing entities across temporal dimensions [36,37]. Graph neural network-based
methods such as TEA-GNN [13] combine GNN architectures with time-aware
attention mechanisms to aggregate neighbor information and generate temporal-
aware entity representations. Attention-based approaches like TREA integrate
temporal and relational information through weighted neighbor aggregation [21],
while methods such as TEA employ time-aware attention layers to automati-
cally weight temporal and relational components [22]. Self-supervised learning
techniques, exemplified by TSEA, enhance entity alignment through temporal
knowledge completion without requiring manually annotated seeds [20]. Ad-
vanced modeling approaches have incorporated relation association and prob-
abilistic calibration mechanisms [19], with some methods addressing uncertainty
through fuzzy semantic modeling and global structure learning. However, these
approaches primarily focus on structural and temporal embeddings while inade-
quately exploiting rich semantic information from entity attributes and contex-
tual descriptions, and they lack unified frameworks for adaptively integrating
and weighting multi-dimensional information sources (temporal, relational, and
semantic) based on dataset-specific characteristics.
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LLM-Based Entity Alignment. Recent advances in LLMs have opened new
avenues for entity alignment through their semantic understanding and reason-
ing capabilities. LLM4EA combines active learning with label optimization, uti-
lizing active selection strategies and label optimizers to refine LLM-generated
pseudo-labels [2]. ChatEA transforms entity alignment into multi-round reason-
ing problems, combining LLM-generated labels with graph convolutional net-
works through joint optimization [3]. LLMEA integrates structural and seman-
tic information by first generating candidate sets using graph structure, then
employing LLMs for multi-round reasoning to filter candidates [20]. However,
these LLM-based approaches face critical limitations in practical deployment:
they rely heavily on intensive LLM inference without leveraging basic structural
or temporal information for preliminary screening, resulting in prohibitive com-
putational costs and processing time, particularly when temporal dimensions
significantly expand the search space and computational complexity.

3 Method
3.1 Model Overview

We propose a two-stage entity alignment framework that combines the advan-
tages of GNNs and LLMs to optimize the entity alignment process using struc-
tured temporal, relational, and semantic information [1]. The framework con-
sists of key modules, including a dual-feature encoding module (relation, time),
a graph matching decoding module, and an LLM-Score module.

Fig.1. T3A-LLM Framework

To reduce the computational burden of the LLM, we adopt a staged approach.
Initially, the dual-feature encoding and graph matching modules perform a pre-
liminary alignment based on structural and temporal information to compute
a probability matrix P. Inspired by the work of Zhao et al. [32,33], we select
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a top-n candidate set for each entity based on the probability matrix P. Then,
the LLM-Score module is applied to these candidates for fine-grained semantic
reasoning and scoring based on the LLM’s semantic understanding capabilities.
The final alignment decision integrates the scores from both stages. This ap-
proach enhances alignment accuracy by leveraging the LLM’s semantic power
efficiently [34].

Formally, our framework, termed T3A-LLM (two-stage triple-information
alignment with large language model), strategically combines the computational
efficiency of GNNs with the semantic reasoning power of LLMs for temporal
knowledge graph alignment. It employs a dual-feature encoding mechanism to
capture temporal dynamics and relational structures, followed by an LLM-based
scoring mechanism that performs fine-grained semantic reasoning with adaptive
fusion of structural-temporal and semantic similarity scores.

Figure 1 illustrates the overall architecture and workflow of our T3A-LLM
framework, showing the interaction between the dual-feature encoding stage and
the LLM-based semantic reasoning stage.

3.2 Dual Feature Encoding Module

Time Information Encoding Stage. The goal of the Time Encoding Model is
to capture the temporal features of entities through time-related information [1].
Temporal information is a natural label for entity alignment, but many previous
studies have overlooked the value of time information [6,19]. Different graphs
may capture different events or attributes at different timestamps. The Time
Encoding Model learns time-related features and embeds time information into
the entity representation, thus providing richer contextual information.

Input Time Information. Time information typically exists in the form of times-
tamps or time intervals. For example, the entity "U.S. President" may have the
following timestamps:

{1789, [1861, 1865, [1933, 1945], 2021} (1)

Each timestamp represents the occurrence time of an event, while time in-
tervals represent the duration of an event.

Time Feature Vector Representation. The Time Encoding Model converts this
time information into a fixed-length time feature vector Viemp. To achieve this,
time information is first discretized (e.g., to the year level) and mapped to a
dense vector space via an embedding layer. To capture the sequential nature
and evolution patterns of an entity’s temporal context, we employ a Bidirectional
Long Short-Term Memory network (Bi-LSTM) [1].

For a given entity, its sequence of timestamp embeddings is fed into the
Bi-LSTM, which processes the sequence in both forward and backward direc-
tions. This bidirectional approach allows the model to capture both historical
dependencies and future context. The final hidden states from both directions
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are concatenated to form the final time feature vector Viemp, which comprehen-
sively represents the entity’s temporal signature. This is crucial for distinguishing
entities that are structurally similar but active in different time periods.

Consider the timestamps for the entity "U.S. President" in both graphs
TKG4 and TKGp. If the time patterns (e.g., similarities in time intervals or
timestamps) between the two are highly similar, their time feature vectors will
also be close to each other.

The final output of the Time Encoding Model is the time feature vector
Viemp, which serves as input to the subsequent graph matching decoding module.

Relation Information Encoding Stage. The goal of the Relation Encoding
Model is to capture the structural relationship information between entities [1].
Each entity in the knowledge graph is connected to other entities through various
relationships (e.g., "same type', "belongs to", "located in"). The Relation Encod-
ing Model uses GNNs to capture these connection patterns, thereby generating
the relational feature vectors of entities [10,12].

Input and Graph Structure Representation. We consider the graph structure of
entities and relationships. Suppose we have a knowledge graph containing several
entities £ = {ej,eq,...,e,} and relationships R = {ry,rq,...,r,} between
these entities, where each relationship 7; connects two entities e; and e;. These
entities are connected through relationships r to form an undirected or directed
graph. For example, in a graph containing academic papers, the entities could
be "papers" and "authors", with relationships such as "author writes paper" or
"paper cites other paper".

Relational Feature Vector Representation. We aim to convert each entity e; and
relationship r; into a vector that represents the relationship information of the
entity. First, each entity e; and relationship r; are mapped to an initial embed-
ding space, represented by the embedding vectors e; and r;. These embedding
vectors are then updated and fused using GNNs. Note that in our design, the
Relation Encoding Model focuses purely on the structural and relational pat-
terns, while temporal dynamics are captured by the dedicated Time Encoding
Model. These two distinct feature aspects, Vel and Viemp, are then fused in
the subsequent decoding stage. This modular separation allows each module to
specialize in capturing its respective information type. Let hi(l) represent the
embedding of entity e; at layer [ of the GNN. The update rule is as follows:

h® = Z WO . p; D 4 p® (2)
JEN (i)

where A (i) is the set of neighboring entities of e;, and WO and b® are the
weight matrix and bias term at layer [, respectively. o(-) is the nonlinear acti-
vation function. The updated embedding vector h; %) is the relational feature
vector of entity e; in the graph, which is used in subsequent matching processes.
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Ezample For instance, in TK G 4, the entity "U.S. President" is connected to the
entity "Nobel Prize" through the relation "received__award". After processing by
the Relation Encoding Model, the relational feature vectors of "U.S. President"
and "Nobel Prize" will be updated. If these entities also have similar relations in
other contexts, their feature vectors will tend to converge in high-dimensional
space.

These feature vectors are used as input for the subsequent graph matching
decoding module. Through this dual encoding approach, we can fully utilize
both the structural and temporal information of entities, providing richer feature
representations for cross-graph entity alignment [16,17].

3.3 Graph Matching Decoding Module

Following DualMatch [1], we treat the entity alignment problem as a weighted
graph matching problem. The Graph Matching Decoder module combines the
relational and temporal information obtained from the dual-feature encoding
module to determine which entities should be aligned by calculating the simi-
larity and weighted fusion of the two major indices [1,20].

Similarity Calculation. First, we calculate the similarity between all entities
in TKG 4 and TKGpg. We calculate the similarity based on the relational feature
vector V1 and the temporal feature vector Viemp.

Relational Similarity. Based on the V. vector, we obtain a relational similarity
matrix Spel.

Temporal Similarity. Based on the Viemp vector, we obtain a temporal similarity
matrix Stemp-

The specific calculation method is as follows. For the relational feature vec-
tors Vyel(ea) and Ve (eg), we use common similarity measures (such as cosine
similarity or Euclidean distance) to compute the similarity. We use cosine sim-
ilarity to measure the similarity between two vectors, defined by the following
formula:

Viei(€a) - Viel(en)
Srel(€a,eB) = . (3)
¢ [Vier(ea)|[[[Vrei(en)|l
where V,e(e4) and Ve (ep) are the relational feature vectors of entities e4 and
ep, and ||[Via(ea)| and | Ve (ep)| are their Euclidean norms.

Weighted Fusion. Next, we perform weighted fusion of the two similarity
matrices Sye1 and Siemp. This fusion process is not a simple summation, but
rather a weighted process that reflects the overall similarity between the two
graphs in terms of structure and time. We use the Weisfeiler-Lehman (WL) graph
kernel method to help determine the weights for this fusion [21]. Specifically,
the WL graph kernel calculates the similarity between each pair of graphs and
determines how to weight the temporal feature matrix Siemp and the relational
feature matrix S,1, thus generating the final weighted matrix Sfysed-
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The weighted fusion formula is as follows:
Stused = O - Stemp + (1 - 04) - Stel (4)

where the weight coefficient « is automatically determined based on the WL
method, reflecting the overall characteristics of the graph (such as time pattern
differences or relational structure similarity).

Graph Matching Optimization via Sinkhorn Algorithm. After the
weighted fusion, we can further solve the graph matching problem using the
similarity matrix Sgseq. We adopt optimization methods such as the Sinkhorn
algorithm [23] to solve the weighted graph matching problem, thus generating
an alignment probability matrix P, where P[i, j] represents the probability or
confidence that entity e; in TKG4 and entity e; in TKGp correspond to the
same entity. This matrix P provides the basis for selecting the top-n candidates
for the LLM stage. Specifically, for each entity e; € T KG 4, we sort the probabil-
ities in the corresponding row PJi, :] in descending order. The top n entities from
T K G p with the highest probabilities are then selected to form the candidate set
for e;. This screening step effectively narrows the search space from the entire
set of entities in TKGp down to a manageable size n, significantly improving
the efficiency of the subsequent LLM-based refinement.

3.4 LLM-Score Module

To further enhance semantic understanding and improve alignment accuracy, we
introduce a multiple-choice scoring mechanism that combines an LLM to score
and infer the semantic relationships of candidate entities. We first obtain a top-n
candidate set through the feature extraction and initial screening steps described
earlier (Section 3.3), where the value of n will be adjusted in experiments to
observe its specific effect. Next, for these candidate entities, we prepare their
relevant information (e.g., entity name, description, key neighbors, temporal
context) and input it into the LLM for reasoning and scoring. By leveraging
the LLM’s reasoning capabilities, we refine the entity alignment [34]. Finally, we
perform a weighted fusion of the similarity scores obtained from the knowledge
graph structure/time (Sgysed) and the LLM (Syp, ) to generate the final alignment
score, and further compute the final probability matrix.

LLM Multiple-Choice Scoring. During the LLM’s multi-round reasoning
process, the LLM will infer and make decisions based on the provided entity
description, relationships, and contextual information [38-40]. Each reasoning
round will assess the quality of the candidate entities and make alignment deci-
sions. Given that LLMs often produce extreme scores (e.g., 0 or 1) in practical
applications, we designed a multiple-choice mechanism to refine the scoring seg-
ments. The specific prompt template design is shown in Fig. 2.

By using this multiple-choice scoring approach, the LLM can more accurately
judge the semantic matching between entities, while avoiding extreme scores
(such as 0 or 1).
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Fig. 2. Sample Prompt Framework Design

Similarity Fusion. After the LLM reasoning process generates scores for each
entity pair within the top-n candidate set, we fuse the graph-based similarity
matrix Spysea calculated by the Graph Matching Decoder (for the specific pair)
with the semantic similarity scores Sy, generated by the LLM, obtaining the
final alignment score:

Sﬁnal = ﬂ . Sfused + (1 - 6) . Sllm (5)

where [ is a weight coefficient determined through experiments, representing
the combined weight of relational, temporal, and deep semantic understanding
obtained through LLM-based reasoning and inference. Gradient experiments will
be set up in the experiment to verify the effect of 8 on the alignment performance.
This fusion is applied only to the top-n candidates considered by the LLM.

Post-Processing After Comprehensive Scoring. Based on the final com-
prehensive scores Sgna for the top-n candidates (and potentially considering
the original Sguseq scores for others), we calculate the final probability matrix
P. Alignment decisions are then made based on this final matrix, typically by
selecting the highest probability match for each entity.

4 Experiments

4.1 Dataset Description

Our study utilizes two complementary temporal knowledge graph datasets that
represent distinct alignment challenges [18].

DICEWS: The DICEWS dataset is derived from the Integrated Crisis Early
Warning System (ICEWS) and records temporal political and military events
from 2005 to 2015. It contains approximately 9,500 entities, 246 relations, and
300,000 quadruples with high structural symmetry. This creates a scenario where
temporal information becomes the primary discriminative signal for entity align-
ment [9, 14].
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WY50K: The WY50K dataset is constructed from Wikidata and YAGO,
containing approximately 50,000 entities and over 200,000 quadruples cover-
ing general-knowledge entities. Due to its cross-knowledge-base nature, WY50K
exhibits significant structural heterogeneity with lower structural overlap, in-
troducing substantial semantic disambiguation challenges where entities require
sophisticated semantic understanding for accurate alignment. This makes deep
semantic understanding obtained through LLM-based reasoning and inference
the dominant signal for successful alignment [11].

4.2 Evaluation Metrics

We assess the entity alignment performance using three standard metrics, which
together provide a comprehensive view of the model’s accuracy, recall, and rank-
ing robustness.The results of each indicator in the following experiment are the
averages of 10 independent runs.

Hits@1 (top-1 Hit Rate): Measures the percentage of correct entities
ranked as the top candidate. It serves as a strict metric for alignment precision.

Hits@10 (top-10 Hit Rate): Measures the percentage of correct entities
ranked as the top candidate. It serves as a strict metric for alignment precision.

Mean Reciprocal Rank (MRR): Measures the percentage of correct en-
tities ranked as the top candidate. It serves as a strict metric for alignment
precision.

4.3 Comprehensive Performance Evaluation and Module Impact
Analysis

Comprehensive Evaluation of Entity Alignment Performance. As
shown in Table 1, our T3A-LLM framework consistently achieves state-of-the-art
performance across all datasets and metrics. Notably, compared to the strongest
time-aware baseline DualMatch, T3A-LLM secures a significant 2.0 percentage
point gain in Hit@1 on the temporal-dominant DICEWS-1K dataset and a 1.3
point gain on the semantic-dominant WY50K-5K dataset. These results, con-
firmed to be statistically significant (p < 0.01), underscore the framework’s su-
perior ability to model temporal dynamics and resolve semantic ambiguities.

Baselines. We use multiple state-of-the-art EA methods as baselines fol-
lowing the settings in previous studies [1]. The baselines include time-unaware
methods: JAPE [24], AlignE [25], GCN-Align [26], MuGNN [27], MRAEA [28],
and RRFA [29]; and time-aware methods: TEA-GNN [30], TREA [31], and
DualMatch [1].

Ablation Study. The ablation studies (Table 2 ) validate the necessity of each
component by revealing their dataset-specific contributions. On the temporal-
dominant DICEWS-1K dataset, removing the time encoder (-Time) causes the
most significant performance drop in Hit@1 (14.8%), whereas on the semantic-
dominant WY50K-5K, removing the relation encoder (—Relation) is most detri-
mental (12.8% drop). This confirms that our model effectively adapts to the
primary information signal of each dataset. The LLM module (-LLM) provides
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a consistent performance boost, proving its crucial role in fine-grained semantic
refinement.

Table 1. Entity Alignment Performance Comparison

DICEWS-1K DICEWS-200 WY50K-5K WY50K-1K
H@1l H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@Q1 H@10 MRR

Time-Unaware Methods

JAPE 13.9 28.6 19.0 9.1 20.3 13.1 26.5 47.8 33.8 9.8 25.7 15.1
GCN-Align 19.7 45.1 28.3 15.8 35.1 224 50.3 70.2 57.3 20.9 38.6 27.2
AlignE 49.2 73.8 581 21.1 44.2 29.5 743 87.1 79.2 55.1 70.2 60.8
RREA 71.0 87.1 77.1 64.5 81.2 70.9 81.6 92.5 85.8 68.3 84.7 74.2
MRAEA 66.8 85.7 73.6 46.2 71.9 55.5 79.3 90.1 83.9 61.1 788 67.6
MuGNN  51.2 781 60.7 359 57.1 40.5 75.0 87.8 79.8 57.3 72.1 62.1
T3A-LLM 72.8 88.5 78.5 65.9 83.1 72.1 88.2 95.1 91.0 74.2 87.6 82.5

Time-Aware Methods

TREA 90.2 95.4 922 89.8 94.7 91.7 928 97.6 94.7 82.7 92.3 87.3
TEA-GNN 87.3 93.5 90.1 86.1 92.8 89.1 86.7 94.9 89.8 71.0 85.8 76.3
DualMatch 95.3 97.3 96.1 95.0 97.2 96.0 98.1 99.6 98.6 94.0 97.8 95.5
T3A-LLM 97.3 98.6 97.8 96.8 98.5 97.6 99.4 100.0 99.6 96.2 99.1 97.5

Methods

* DICEWS-1K/200: DICEWS dataset with 1000/200 seed alignment pairs
* WYB0K-5K/1K: WY50K dataset with 5000/1000 seed alignment pairs

Table 2. Ablation Study of T3A-LLM(Performance Metrics in %)

Model DICEWS-1K  DICEWS-200  WY50K-5K WY50K-1K
Variant Hal H@10 MRR Hal H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Original 97.3 98.6 97.8 96.8 98.5 97.6 99.4 100.0 99.6 96.2 99.1 97.5
— Relation 90.8 95.9 93.1 89.2 954 92.1 86.6 94.2 89.9 84.1 93.1 88.3
— Time 82.5 92.1 86.6 81.8 91.8 86.2 96.2 99.3 97.7 93.1 97.6 95.2
— LLM 95.3 97.3 96.1 95.0 97.2 96.0 98.1 99.6 98.6 94.0 97.8 95.5

"

indicates the removal of the corresponding module.

4.4 Sensitivity Analysis

Gradient Analysis of top-n. We analyzed the impact of the candidate set
size n (Table 3 and Fig. 3). Performance improves as n increases, with gains
plateauing around n=>50. This value strikes an optimal balance between maxi-
mizing recall for the LLM stage and maintaining computational efficiency, and
was thus adopted for our experiments.

Gradient Analysis of 3 Value in Sgna - The analysis of the fusion weight
B (Table 4 and Fig. 4) reveals dataset-dependent optimal values. The temporal-
dominant DICEWS datasets favor a higher 8 (0.7), giving more weight to struc-
tural /temporal features because of their high structural overlap and strong tem-
poral signals. In contrast, the semantic-dominant WY50K datasets perform best
with a lower 5 (0.4), highlighting the greater importance of LLM-based semantic
scoring for resolving cross-knowledge-base heterogeneity and semantic ambigu-
ities [15]. This adaptability validates our fusion strategy and demonstrates the
framework’s ability to automatically adjust to different information dominance
patterns.
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Table 3. Impact of top-n Candidate Pool Size on Entity Alignment

DICEWS-1K DICEWS-200 WY50K-5K WY50K-1K
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

top-n

n=10 97.1 984 97.6 96.5 98.3 97.4 99.2 99.9 99.5 96.0 98.9 97.3
n=20 974 98.7 979 96.8 98.6 97.7 99.5 100.0 99.7 96.3 99.2 97.6
n=>50 97.3 98.6 97.8 96.8 98.5 97.6 99.4 100.0 99.6 96.2 99.1 97.5
n=100 97.2 98.5 97.7 96.7 98.4 97.5 99.3 100.0 99.5 96.1 99.0 974

H@10 (%)

H@1 (%)

97 96
10 20 50 100 10 20 50 100 10 20 50 100
Top-n Value Top-n Value Top-n Value

Fig. 3. Gradient Analysis of top-n

Table 4. Effect of LLM Fusion Weight 5 on Hybrid Scoring

DICEWS-1K DICEWS-200 WY50K-5K WY50K-1K
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

5 Value

0.1 94.8 97.2 95.8 94.3 96.9 954 99.1 99.8 99.4 95.8 98.6 96.8
0.3 96.2 98.3 97.1 95.7 98.1 96.7 99.3 99.9 99.5 96.4 99.0 97.3
0.4 96.6 98.5 97.4 96.2 98.4 97.1 99.4 100.0 99.6 96.2 99.1 97.5
0.5 96.9 98.6 97.6 96.5 98.5 97.3 99.2 999 994 959 98.8 97.2
0.7 97.3 98.6 97.8 96.8 98.5 97.6 99.0 99.7 99.2 95.6 98.5 96.9
0.8 96.8 98.4 97.5 96.3 98.2 97.2 98.7 99.5 99.0 95.2 98.3 96.6
1.0 95.3 97.3 96.1 95.0 97.2 96.0 98.1 99.6 98.6 94.0 97.8 95.5

Fig. 4. Gradient Analysis of 5 Value in Sgnal
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4.5 Comparison of Performance Across Different LLM
Architectures

To assess the impact of the LLM choice, we compared various architectures
(Table 5 and Fig. 5). State-of-the-art models like GPT-40 and DeepSeek-R1
significantly outperform smaller models, achieving the highest scores on both
temporal and semantic-dominant datasets. The results show a strong correla-
tion between the LLM’s reasoning capability and the final alignment accuracy,
confirming the value of using powerful models for the semantic refinement stage.

Table 5. Performance Comparison Across LLM Architectures

DICEWS WY50K Param.
LLM Type B
H@l H@10 MRR HQ@Q1 H@10 MRR (B)
BERT 91.2 953 928 96.8 989 974 0.34
GPT-40 97.3 98.6 97.8 994 100.0 99.6 ~180

DeepSeek-R1 97.1 984 97.6 992 99.9 994 ~67
Qwen3 (Alibaba) 96.8 982 97.3 99.0 99.8 99.2 110
Ernie 4.0 Turbo  97.0 983 97,5 99.1 999 993 ~130

Note: DeepSeek-R1 refers to DeepSeek-R1-0528. Parameter counts are approximate.
Best performers highlighted in bold.
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Fig. 5. Comparison of Performance Across Different LLM Architectures

4.6 Case Study

In the case study of the DICEWS dataset, regarding the alignment task for the
entity "United_ States President" (USP-1024), existing methods such as Dual-
Match [1], which rely solely on features like structure and time, incorrectly align
it with "President_of Argentina" (PA-789) (with a similarity score of 0.87).
In contrast, the T3A-LLM framework adopts a two-stage processing approach:
first, it generates a candidate set (including "President of Argentina', "PO-
TUS", and "UN_ Secretary_ General") based on spatiotemporal embedding re-
sults; then, it leverages LLM for semantic reasoning to conduct a comprehensive
evaluation of the candidate entities’ names (e.g., identifying "POTUS" as an ab-
breviation for "President of the United States"), descriptions (e.g., the differences
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between the U.S. Electoral College system and Argentina’s universal suffrage sys-
tem), as well as structural and temporal features. Eventually, it correctly matches
"United_ States_ President" to "POTUS" (POTUS-456) with a 95% alignment
probability. This verifies the crucial role of LLM’s semantic reasoning in break-
ing through the trap of structural similarity in traditional embedding methods,
resolving semantic ambiguities, and integrating multi-dimensional information,
thereby significantly improving the accuracy of entity alignment.

5 Conclusion and Future Discussion

Traditional TKG alignment methods struggle with semantic understanding and
computational efficiency when dealing with temporal information and cross-
domain heterogeneity. Current LLM-based approaches, while offering superior
semantic reasoning capabilities, suffer from high computational costs and scal-
ability limitations. To address these challenges, we propose T3A-LLM, a novel
two-stage framework that synergistically combines GNNs and LLMs to achieve
both computational efficiency and semantic precision. Our approach demon-
strates significant performance improvements across temporal-dominant and
semantic-dominant datasets, with experimental results showing consistent state-
of-the-art performance and dataset-adaptive information fusion capabilities.
This advancement is crucial for real-world applications requiring accurate en-
tity alignment across diverse knowledge sources, such as knowledge integration
systems and cross-domain information retrieval. However, our approach assumes
relatively stable temporal patterns and may not handle rapidly evolving tempo-
ral dynamics. Future research directions include developing more sophisticated
adaptive weighting mechanisms for dynamic temporal patterns and extending
the framework to handle real-time knowledge graph evolution scenarios. Addi-
tionally, addressing scalability challenges in massive-scale temporal knowledge
graphs with millions of entities and distributed processing architectures remains
an important avenue for practical deployment in enterprise-level applications.
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